當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.strongly_connected_components方法代碼示例

本文整理匯總了Python中networkx.strongly_connected_components方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.strongly_connected_components方法的具體用法?Python networkx.strongly_connected_components怎麽用?Python networkx.strongly_connected_components使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.strongly_connected_components方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _high_degree_components

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def _high_degree_components(G, k):
    """Helper for filtering components that cant be k-edge-connected.

    Removes and generates each node with degree less than k.  Then generates
    remaining components where all nodes have degree at least k.
    """
    # Iteravely remove parts of the graph that are not k-edge-connected
    H = G.copy()
    singletons = set(_low_degree_nodes(H, k))
    while singletons:
        # Only search neighbors of removed nodes
        nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons)))
        nbunch.difference_update(singletons)
        H.remove_nodes_from(singletons)
        for node in singletons:
            yield {node}
        singletons = set(_low_degree_nodes(H, k, nbunch))

    # Note: remaining connected components may not be k-edge-connected
    if G.is_directed():
        for cc in nx.strongly_connected_components(H):
            yield cc
    else:
        for cc in nx.connected_components(H):
            yield cc 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:27,代碼來源:nx_edge_kcomponents.py

示例2: _parse_loops_from_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def _parse_loops_from_graph(self, graph):
        """
        Return all Loop instances that can be extracted from a graph.

        :param graph:   The graph to analyze.

        :return:        A list of all the Loop instances that were found in the graph.
        """
        outtop = []
        outall = []
        for subg in ( networkx.induced_subgraph(graph, nodes).copy() for nodes in networkx.strongly_connected_components(graph)):
            if len(subg.nodes()) == 1:
                if len(list(subg.successors(list(subg.nodes())[0]))) == 0:
                    continue
            thisloop, allloops = self._parse_loop_graph(subg, graph)
            if thisloop is not None:
                outall += allloops
                outtop.append(thisloop)
        return outtop, outall 
開發者ID:angr,項目名稱:angr,代碼行數:21,代碼來源:loopfinder.py

示例3: detect_deadlock

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def detect_deadlock(self):
        """
        Detects whether the system is in a deadlocked state,
        that is, is there a knot. Note that this code is taken
        and adapted from the NetworkX Developer Zone Ticket
        #663 knot.py (09/06/2015).
        """
        knots = []
        for c in nx.strongly_connected_components(self.statedigraph):
            subgraph = self.statedigraph.subgraph(c)
            nodes = set(subgraph.nodes())
            if len(nodes) == 1:
                n = nodes.pop()
                nodes.add(n)
                if set(self.statedigraph.successors(n)) == nodes:
                    knots.append(subgraph)
            else:
                for n in nodes:
                    successors = nx.descendants(self.statedigraph, n)
                    if successors <= nodes:
                        knots.append(subgraph)
                        break
        if len(knots) > 0:
            return True
        return False 
開發者ID:CiwPython,項目名稱:Ciw,代碼行數:27,代碼來源:deadlock_detector.py

示例4: test_strong_connected_components

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def test_strong_connected_components(random_network):
    from pathpy.classes.network import network_to_networkx
    from networkx import strongly_connected_components
    from pathpy.algorithms.components import connected_components

    wrong_gcc = 0
    for i in range(200):
        hn = random_network(n=10, m=30, directed=True, seed=i)

        hn_nx = network_to_networkx(hn)
        size_largest_nx = len(max(strongly_connected_components(hn_nx), key=len))

        components = connected_components(hn)
        size_largest = max(len(c) for c in components)

        if size_largest_nx != size_largest:
            # print(f'seed {i} | nx: {size_largest_nx}, pp: {size_largest}')
            wrong_gcc += 1

    assert wrong_gcc < 1, 'wrong results {wrong_gcc/i:0.1%}' 
開發者ID:uzhdag,項目名稱:pathpy,代碼行數:22,代碼來源:test_DAG.py

示例5: test_condensation_as_quotient

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def test_condensation_as_quotient(self):
        """This tests that the condensation of a graph can be viewed as the
        quotient graph under the "in the same connected component" equivalence
        relation.

        """
        # This example graph comes from the file `test_strongly_connected.py`.
        G = nx.DiGraph()
        G.add_edges_from([(1, 2), (2, 3), (2, 11), (2, 12), (3, 4), (4, 3),
                          (4, 5), (5, 6), (6, 5), (6, 7), (7, 8), (7, 9),
                          (7, 10), (8, 9), (9, 7), (10, 6), (11, 2), (11, 4),
                          (11, 6), (12, 6), (12, 11)])
        scc = list(nx.strongly_connected_components(G))
        C = nx.condensation(G, scc)
        component_of = C.graph['mapping']
        # Two nodes are equivalent if they are in the same connected component.
        same_component = lambda u, v: component_of[u] == component_of[v]
        Q = nx.quotient_graph(G, same_component)
        assert_true(nx.is_isomorphic(C, Q)) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:21,代碼來源:test_minors.py

示例6: number_strongly_connected_components

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def number_strongly_connected_components(G):
    """Return number of strongly connected components in graph.

    Parameters
    ----------
    G : NetworkX graph
       A directed graph.

    Returns
    -------
    n : integer
       Number of strongly connected components

    See Also
    --------
    connected_components

    Notes
    -----
    For directed graphs only.
    """
    return len(list(strongly_connected_components(G))) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:24,代碼來源:strongly_connected.py

示例7: test_contract_scc1

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def test_contract_scc1(self):
        G = nx.DiGraph()
        G.add_edges_from([
            (1, 2), (2, 3), (2, 11), (2, 12), (3, 4), (4, 3), (4, 5), (5, 6),
            (6, 5), (6, 7), (7, 8), (7, 9), (7, 10), (8, 9), (9, 7), (10, 6),
            (11, 2), (11, 4), (11, 6), (12, 6), (12, 11),
        ])
        scc = list(nx.strongly_connected_components(G))
        cG = nx.condensation(G, scc)
        # DAG
        assert_true(nx.is_directed_acyclic_graph(cG))
        # nodes
        assert_equal(sorted(cG.nodes()), [0, 1, 2, 3])
        # edges
        mapping={}
        for i, component in enumerate(scc):
            for n in component:
                mapping[n] = i
        edge = (mapping[2], mapping[3])
        assert_true(cG.has_edge(*edge))
        edge = (mapping[2], mapping[5])
        assert_true(cG.has_edge(*edge))
        edge = (mapping[3], mapping[5])
        assert_true(cG.has_edge(*edge)) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:26,代碼來源:test_strongly_connected.py

示例8: _high_degree_components

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def _high_degree_components(G, k):
    """Helper for filtering components that can't be k-edge-connected.

    Removes and generates each node with degree less than k.  Then generates
    remaining components where all nodes have degree at least k.
    """
    # Iteravely remove parts of the graph that are not k-edge-connected
    H = G.copy()
    singletons = set(_low_degree_nodes(H, k))
    while singletons:
        # Only search neighbors of removed nodes
        nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons)))
        nbunch.difference_update(singletons)
        H.remove_nodes_from(singletons)
        for node in singletons:
            yield {node}
        singletons = set(_low_degree_nodes(H, k, nbunch))

    # Note: remaining connected components may not be k-edge-connected
    if G.is_directed():
        for cc in nx.strongly_connected_components(H):
            yield cc
    else:
        for cc in nx.connected_components(H):
            yield cc 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:27,代碼來源:edge_kcomponents.py

示例9: test_condensation_as_quotient

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def test_condensation_as_quotient(self):
        """This tests that the condensation of a graph can be viewed as the
        quotient graph under the "in the same connected component" equivalence
        relation.

        """
        # This example graph comes from the file `test_strongly_connected.py`.
        G = nx.DiGraph()
        G.add_edges_from([(1, 2), (2, 3), (2, 11), (2, 12), (3, 4), (4, 3),
                          (4, 5), (5, 6), (6, 5), (6, 7), (7, 8), (7, 9),
                          (7, 10), (8, 9), (9, 7), (10, 6), (11, 2), (11, 4),
                          (11, 6), (12, 6), (12, 11)])
        scc = list(nx.strongly_connected_components(G))
        C = nx.condensation(G, scc)
        component_of = C.graph['mapping']
        # Two nodes are equivalent if they are in the same connected component.

        def same_component(u, v):
            return component_of[u] == component_of[v]

        Q = nx.quotient_graph(G, same_component)
        assert_true(nx.is_isomorphic(C, Q)) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:24,代碼來源:test_minors.py

示例10: find_widening_points

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def find_widening_points(function_addr, function_endpoints, graph):  # pylint: disable=unused-argument
        """
        Given a local transition graph of a function, find all widening points inside.

        Correctly choosing widening points is very important in order to not lose too much information during static
        analysis. We mainly consider merge points that has at least one loop back edges coming in as widening points.

        :param int function_addr: Address of the function.
        :param list function_endpoints: Endpoints of the function, typically coming from Function.endpoints.
        :param networkx.DiGraph graph: A local transition graph of a function, normally Function.graph.
        :return: A list of addresses of widening points.
        :rtype: list
        """

        sccs = networkx.strongly_connected_components(graph)

        widening_addrs = set()

        for scc in sccs:
            if len(scc) == 1:
                node = next(iter(scc))
                if graph.has_edge(node, node):
                    # self loop
                    widening_addrs.add(node.addr)
            else:
                for n in scc:
                    predecessors = graph.predecessors(n)
                    if any([ p not in scc for p in predecessors]):
                        widening_addrs.add(n.addr)
                        break

        return list(widening_addrs) 
開發者ID:angr,項目名稱:angr,代碼行數:34,代碼來源:cfg_utils.py

示例11: _calculate_safe_nodes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def _calculate_safe_nodes(self):
        if self._safe_nodes is not None:
            return

        connected_components = list(networkx.strongly_connected_components(self._digraph))
        for component in connected_components:
            if self._state.node.index in component:
                assert self._safe_nodes is None
                self._safe_nodes = component

        assert self._safe_nodes is not None 
開發者ID:randovania,項目名稱:randovania,代碼行數:13,代碼來源:generator_reach.py

示例12: test_strong_connected_tmp

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def test_strong_connected_tmp(random_temp_network):
    from pathpy.path_extraction.temporal_paths import paths_from_temporal_network_dag
    from pathpy.algorithms.components import connected_components
    from pathpy.classes.network import network_to_networkx
    from networkx import strongly_connected_components
    from pathpy.utils.log import Log, Severity
    Log.set_min_severity(Severity.WARNING)

    for delta in range(1, 900, 50):
        print(delta)
        tn = random_temp_network(n=10, m=100, min_t=0, max_t=800, seed=90)  # type: pp.TemporalNetwork
        obs_times = np.array([t[-1] for t in tn.tedges])
        obs_times.sort()

        p = paths_from_temporal_network_dag(tn, delta=delta)
        hn = pp.HigherOrderNetwork(p, k=2)

        # using NetworkX
        nx_network = network_to_networkx(hn)
        giant_size_nx = len(max(strongly_connected_components(nx_network), key=len))

        # using pathpy
        components = connected_components(hn)
        if giant_size_nx > 3:
            print(giant_size_nx)
        giant_size_pp = max(len(c) for c in components)

        assert giant_size_nx == giant_size_pp 
開發者ID:uzhdag,項目名稱:pathpy,代碼行數:30,代碼來源:test_DAG.py

示例13: flow_hierarchy

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def flow_hierarchy(G, weight=None):
    """Returns the flow hierarchy of a directed network.

    Flow hierarchy is defined as the fraction of edges not participating
    in cycles in a directed graph [1]_.

    Parameters
    ----------
    G : DiGraph or MultiDiGraph
       A directed graph

    weight : key,optional (default=None)
       Attribute to use for node weights. If None the weight defaults to 1.

    Returns
    -------
    h : float
       Flow heirarchy value

    Notes
    -----
    The algorithm described in [1]_ computes the flow hierarchy through
    exponentiation of the adjacency matrix.  This function implements an
    alternative approach that finds strongly connected components.
    An edge is in a cycle if and only if it is in a strongly connected
    component, which can be found in `O(m)` time using Tarjan's algorithm.

    References
    ----------
    .. [1] Luo, J.; Magee, C.L. (2011),
       Detecting evolving patterns of self-organizing networks by flow
       hierarchy measurement, Complexity, Volume 16 Issue 6 53-61.
       DOI: 10.1002/cplx.20368
       http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
    """
    if not G.is_directed():
        raise nx.NetworkXError("G must be a digraph in flow_heirarchy")
    scc = nx.strongly_connected_components(G)
    return 1.-sum(G.subgraph(c).size(weight) for c in scc)/float(G.size(weight)) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:41,代碼來源:hierarchy.py

示例14: is_strongly_connected

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def is_strongly_connected(G):
    """Test directed graph for strong connectivity.

    Parameters
    ----------
    G : NetworkX Graph
       A directed graph.

    Returns
    -------
    connected : bool
      True if the graph is strongly connected, False otherwise.

    See Also
    --------
    strongly_connected_components

    Notes
    -----
    For directed graphs only.
    """
    if len(G) == 0:
        raise nx.NetworkXPointlessConcept(
            """Connectivity is undefined for the null graph.""")

    return len(list(strongly_connected_components(G))[0]) == len(G) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:28,代碼來源:strongly_connected.py

示例15: test_tarjan

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import strongly_connected_components [as 別名]
def test_tarjan(self):
        scc = nx.strongly_connected_components
        for G, C in self.gc:
            assert_equal({frozenset(g) for g in scc(G)}, C) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:6,代碼來源:test_strongly_connected.py


注:本文中的networkx.strongly_connected_components方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。