本文整理匯總了Python中networkx.spectral_layout方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.spectral_layout方法的具體用法?Python networkx.spectral_layout怎麽用?Python networkx.spectral_layout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.spectral_layout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw_spectral
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def draw_spectral(G, **kwargs):
"""Draw networkx graph with spectral layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See hvplot.networkx.draw() for a description of optional
keywords, with the exception of the pos parameter which is not
used by this function.
Returns
-------
graph : holoviews.Graph or holoviews.Overlay
Graph element or Graph and Labels
"""
return draw(G, nx.spectral_layout, **kwargs)
示例2: plot_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def plot_graph(plt, G):
plt.title('num of nodes: '+str(G.number_of_nodes()), fontsize = 4)
parts = community.best_partition(G)
values = [parts.get(node) for node in G.nodes()]
colors = []
for i in range(len(values)):
if values[i] == 0:
colors.append('red')
if values[i] == 1:
colors.append('green')
if values[i] == 2:
colors.append('blue')
if values[i] == 3:
colors.append('yellow')
if values[i] == 4:
colors.append('orange')
if values[i] == 5:
colors.append('pink')
if values[i] == 6:
colors.append('black')
plt.axis("off")
pos = nx.spring_layout(G)
# pos = nx.spectral_layout(G)
nx.draw_networkx(G, with_labels=True, node_size=4, width=0.3, font_size = 3, node_color=colors,pos=pos)
示例3: _spectral
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def _spectral(A, dim=2):
# Input adjacency matrix A
# Uses dense eigenvalue solver from numpy
try:
import numpy as np
except ImportError:
raise ImportError("spectral_layout() requires numpy: http://scipy.org/ ")
try:
nnodes,_=A.shape
except AttributeError:
raise nx.NetworkXError(\
"spectral() takes an adjacency matrix as input")
# form Laplacian matrix
# make sure we have an array instead of a matrix
A=np.asarray(A)
I=np.identity(nnodes,dtype=A.dtype)
D=I*np.sum(A,axis=1) # diagonal of degrees
L=D-A
eigenvalues,eigenvectors=np.linalg.eig(L)
# sort and keep smallest nonzero
index=np.argsort(eigenvalues)[1:dim+1] # 0 index is zero eigenvalue
return np.real(eigenvectors[:,index])
示例4: test_smoke_int
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_smoke_int(self):
G = self.Gi
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.planar_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.fruchterman_reingold_layout(self.bigG)
vpos = nx.spectral_layout(G)
vpos = nx.spectral_layout(G.to_directed())
vpos = nx.spectral_layout(self.bigG)
vpos = nx.spectral_layout(self.bigG.to_directed())
vpos = nx.shell_layout(G)
if self.scipy is not None:
vpos = nx.kamada_kawai_layout(G)
vpos = nx.kamada_kawai_layout(G, dim=1)
示例5: test_empty_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_empty_graph(self):
G = nx.empty_graph()
vpos = nx.random_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.circular_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.planar_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.bipartite_layout(G, G)
assert_equal(vpos, {})
vpos = nx.spring_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.spectral_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.shell_layout(G, center=(1, 1))
assert_equal(vpos, {})
示例6: _spectral
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def _spectral(A, dim=2):
# Input adjacency matrix A
# Uses dense eigenvalue solver from numpy
try:
import numpy as np
except ImportError:
msg = "spectral_layout() requires numpy: http://scipy.org/ "
raise ImportError(msg)
try:
nnodes, _ = A.shape
except AttributeError:
msg = "spectral() takes an adjacency matrix as input"
raise nx.NetworkXError(msg)
# form Laplacian matrix
# make sure we have an array instead of a matrix
A = np.asarray(A)
I = np.identity(nnodes, dtype=A.dtype)
D = I * np.sum(A, axis=1) # diagonal of degrees
L = D - A
eigenvalues, eigenvectors = np.linalg.eig(L)
# sort and keep smallest nonzero
index = np.argsort(eigenvalues)[1:dim + 1] # 0 index is zero eigenvalue
return np.real(eigenvectors[:, index])
示例7: plot_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def plot_graph(self):
import matplotlib.pyplot as plt
pos=networkx.spring_layout(self.G,iterations=2000)
#pos=networkx.spectral_layout(G)
#pos = networkx.random_layout(G)
networkx.draw_networkx_nodes(self.G, pos)
networkx.draw_networkx_edges(self.G, pos, arrows=True)
networkx.draw_networkx_labels(self.G, pos)
plt.show()
示例8: plot_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def plot_graph(G, filename='prova.png', values=None, colorbar_obj=None):
func_types_dic = {
'spring' : nx.spring_layout,
'random' : nx.random_layout,
'shell' : nx.shell_layout,
'spectral' : nx.spectral_layout,
'viz' : graphviz_layout
}
print(G.edges())
print(G.nodes())
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
color_nodes = [values.get(node, 0.2) for node in G.nodes()]
pos = func_types_dic[params.plot_type_str](G)
nodes = nx.draw_networkx_nodes(G, pos, node_color=color_nodes, \
alpha=.6)#, cmap=plt.get_cmap('brg'))
nx.draw_networkx_edges(G, pos, width=2.)
nx.draw_networkx_labels(G, pos, font_color='k', font_weight='10')
plt.title("|V| = %d, |E| = %d"%(len(G.nodes()), len(G.edges())))
colorbar_obj.set_array(color_nodes)
plt.colorbar(colorbar_obj)
plt.axis('off')
fig.savefig(filename, format='png')
plt.close()
示例9: test_smoke_int
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_smoke_int(self):
G=self.Gi
vpos=nx.random_layout(G)
vpos=nx.circular_layout(G)
vpos=nx.spring_layout(G)
vpos=nx.fruchterman_reingold_layout(G)
vpos=nx.spectral_layout(G)
vpos=nx.spectral_layout(self.bigG)
vpos=nx.shell_layout(G)
示例10: test_smoke_string
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_smoke_string(self):
G = self.Gs
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.spectral_layout(G)
vpos = nx.shell_layout(G)
示例11: test_empty_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_empty_graph(self):
G=nx.Graph()
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.shell_layout(G)
vpos = nx.spectral_layout(G)
# center arg
vpos = nx.random_layout(G, scale=2, center=(4,5))
vpos = nx.circular_layout(G, scale=2, center=(4,5))
vpos = nx.spring_layout(G, scale=2, center=(4,5))
vpos = nx.shell_layout(G, scale=2, center=(4,5))
vpos = nx.spectral_layout(G, scale=2, center=(4,5))
示例12: test_single_node
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_single_node(self):
G = nx.Graph()
G.add_node(0)
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.shell_layout(G)
vpos = nx.spectral_layout(G)
# center arg
vpos = nx.random_layout(G, scale=2, center=(4,5))
vpos = nx.circular_layout(G, scale=2, center=(4,5))
vpos = nx.spring_layout(G, scale=2, center=(4,5))
vpos = nx.shell_layout(G, scale=2, center=(4,5))
vpos = nx.spectral_layout(G, scale=2, center=(4,5))
示例13: test_scale_and_center_arg
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_scale_and_center_arg(self):
G = nx.complete_graph(9)
G.add_node(9)
vpos = nx.random_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2, center=(4,5))
vpos = nx.spring_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2, center=(4,5))
vpos = nx.spectral_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2, center=(4,5))
# circular can have twice as big length
vpos = nx.circular_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2*2, center=(4,5))
vpos = nx.shell_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2*2, center=(4,5))
# check default center and scale
vpos = nx.random_layout(G)
self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
vpos = nx.spring_layout(G)
self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
vpos = nx.spectral_layout(G)
self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
vpos = nx.circular_layout(G)
self.check_scale_and_center(vpos, scale=2, center=(0,0))
vpos = nx.shell_layout(G)
self.check_scale_and_center(vpos, scale=2, center=(0,0))
示例14: test_smoke_empty_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_smoke_empty_graph(self):
G = []
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.planar_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.spectral_layout(G)
vpos = nx.shell_layout(G)
vpos = nx.bipartite_layout(G, G)
if self.scipy is not None:
vpos = nx.kamada_kawai_layout(G)
示例15: test_smoke_string
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import spectral_layout [as 別名]
def test_smoke_string(self):
G = self.Gs
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.planar_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.spectral_layout(G)
vpos = nx.shell_layout(G)
if self.scipy is not None:
vpos = nx.kamada_kawai_layout(G)
vpos = nx.kamada_kawai_layout(G, dim=1)