本文整理匯總了Python中networkx.single_source_dijkstra_path_length方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.single_source_dijkstra_path_length方法的具體用法?Python networkx.single_source_dijkstra_path_length怎麽用?Python networkx.single_source_dijkstra_path_length使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.single_source_dijkstra_path_length方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: neighborhoods_weights_to_root
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def neighborhoods_weights_to_root(adjacency, sequence, size):
def _neighborhoods_weights_to_root(adjacency, sequence):
graph = nx.from_numpy_matrix(adjacency)
neighborhoods = np.zeros((sequence.shape[0], size), dtype=np.int32)
neighborhoods.fill(-1)
for i in xrange(0, sequence.shape[0]):
n = sequence[i]
if n < 0:
break
shortest = nx.single_source_dijkstra_path_length(graph, n).items()
shortest = sorted(shortest, key=lambda v: v[1])
shortest = shortest[:size]
for j in xrange(0, min(size, len(shortest))):
neighborhoods[i][j] = shortest[j][0]
return neighborhoods
return tf.py_func(_neighborhoods_weights_to_root, [adjacency, sequence],
tf.int32, stateful=False,
name='neighborhoods_weights_to_root')
示例2: _straightness_centrality
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def _straightness_centrality(G, weight, normalized=True):
"""
Calculates straightness centrality.
"""
straightness_centrality = {}
for n in G.nodes():
straightness = 0
sp = nx.single_source_dijkstra_path_length(G, n, weight=weight)
if len(sp) > 0 and len(G) > 1:
for target in sp:
if n != target:
network_dist = sp[target]
euclidean_dist = _euclidean(n, target)
straightness = straightness + (euclidean_dist / network_dist)
straightness_centrality[n] = straightness * (1.0 / (len(G) - 1.0))
# normalize to number of nodes-1 in connected part
if normalized:
if len(sp) > 1:
s = (len(G) - 1.0) / (len(sp) - 1.0)
straightness_centrality[n] *= s
else:
straightness_centrality[n] = 0
else:
straightness_centrality[n] = 0.0
return straightness_centrality
示例3: weiner_index
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def weiner_index(G, weight=None):
# compute sum of distances between all node pairs
# (with optional weights)
weiner=0.0
if weight is None:
for n in G:
path_length=nx.single_source_shortest_path_length(G,n)
weiner+=sum(path_length.values())
else:
for n in G:
path_length=nx.single_source_dijkstra_path_length(G,
n,weight=weight)
weiner+=sum(path_length.values())
return weiner
示例4: all_pairs_dijkstra_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight'):
""" Compute shortest path lengths between all nodes in a weighted graph.
Parameters
----------
G : NetworkX graph
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
distance : dictionary
Dictionary, keyed by source and target, of shortest path lengths.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The dictionary returned only has keys for reachable node pairs.
"""
length = single_source_dijkstra_path_length
# TODO This can be trivially parallelized.
return {n: length(G, n, cutoff=cutoff, weight=weight) for n in G}
示例5: test_single_source_dijkstra_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def test_single_source_dijkstra_path_length(self):
pl = nx.single_source_dijkstra_path_length
assert_equal(pl(self.MXG4, 0)[2], 4)
spl = pl(self.MXG4, 0, cutoff=2)
assert_false(2 in spl)
示例6: test_negative_edge_cycle
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def test_negative_edge_cycle(self):
G = nx.cycle_graph(5, create_using=nx.DiGraph())
assert_equal(nx.negative_edge_cycle(G), False)
G.add_edge(8, 9, weight=-7)
G.add_edge(9, 8, weight=3)
graph_size = len(G)
assert_equal(nx.negative_edge_cycle(G), True)
assert_equal(graph_size, len(G))
assert_raises(ValueError, nx.single_source_dijkstra_path_length, G, 8)
assert_raises(ValueError, nx.single_source_dijkstra, G, 8)
assert_raises(ValueError, nx.dijkstra_predecessor_and_distance, G, 8)
G.add_edge(9, 10)
assert_raises(ValueError, nx.bidirectional_dijkstra, G, 8, 10)
示例7: test_single_source_shortest_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def test_single_source_shortest_path_length(self):
l=nx.shortest_path_length(self.cycle,0)
assert_equal(l,{0:0,1:1,2:2,3:3,4:3,5:2,6:1})
assert_equal(l,nx.single_source_shortest_path_length(self.cycle,0))
l=nx.shortest_path_length(self.grid,1)
assert_equal(l[16],6)
# now with weights
l=nx.shortest_path_length(self.cycle,0,weight='weight')
assert_equal(l,{0:0,1:1,2:2,3:3,4:3,5:2,6:1})
assert_equal(l,nx.single_source_dijkstra_path_length(self.cycle,0))
l=nx.shortest_path_length(self.grid,1,weight='weight')
assert_equal(l[16],6)
示例8: test_absent_source
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def test_absent_source(self):
# the check is in _dijkstra_multisource, but this will provide
# regression testing against later changes to any of the "client"
# Dijkstra or Bellman-Ford functions
G = nx.path_graph(2)
for fn in (nx.dijkstra_path,
nx.dijkstra_path_length,
nx.single_source_dijkstra_path,
nx.single_source_dijkstra_path_length,
nx.single_source_dijkstra,
nx.dijkstra_predecessor_and_distance,):
assert_raises(nx.NodeNotFound, fn, G, 3, 0)
示例9: test_single_source_dijkstra_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def test_single_source_dijkstra_path_length(self):
pl = nx.single_source_dijkstra_path_length
assert_equal(dict(pl(self.MXG4, 0))[2], 4)
spl = pl(self.MXG4, 0, cutoff=2)
assert_false(2 in spl)
示例10: test_single_source_shortest_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def test_single_source_shortest_path_length(self):
l = dict(nx.shortest_path_length(self.cycle,0))
assert_equal(l,{0:0,1:1,2:2,3:3,4:3,5:2,6:1})
assert_equal(l, dict(nx.single_source_shortest_path_length(self.cycle,0)))
l = dict(nx.shortest_path_length(self.grid,1))
assert_equal(l[16],6)
# now with weights
l = dict(nx.shortest_path_length(self.cycle, 0, weight='weight'))
assert_equal(l, {0: 0, 1: 1, 2: 2, 3: 3, 4: 3, 5: 2, 6: 1})
assert_equal(l, dict(nx.single_source_dijkstra_path_length(
self.cycle, 0)))
l = dict(nx.shortest_path_length(self.grid, 1, weight='weight'))
assert_equal(l[16], 6)
示例11: neighborhoods_grid_spiral
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def neighborhoods_grid_spiral(adjacency, sequence, size):
def _neighborhoods_grid_spiral(adjacency, sequence):
graph = nx.from_numpy_matrix(adjacency)
neighborhoods = np.zeros((sequence.shape[0], size), dtype=np.int32)
neighborhoods.fill(-1)
# Note: This method just works properly on planar graphs where nodes
# are placed in a grid like layout and are weighted by distance.
#
# Add root to arr => [root]
# Find nearest neighbor x to root
# Add x => arr = [root, x]
# Find nearest neighbor y with n(x, y) and min w(x,y) + w(root, y)
# that is not already in arr.
# set x = y
# repeat until arr.length == size
for i in xrange(0, sequence.shape[0]):
root = sequence[i]
if root < 0:
break
# Add root node to the beginning of the neighborhood.
neighborhoods[i][0] = root
x = root
ws = nx.single_source_dijkstra_path_length(graph, root)
ws = list(ws.items())
for j in xrange(1, size):
if x == -1:
break
y = -1
weight = float('inf')
for _, n, d, in graph.edges_iter(x, data=True):
if n in neighborhoods[i]:
continue
w = ws[n][1] + d['weight']
if w < weight:
y = n
weight = w
neighborhoods[i][j] = y
x = y
return neighborhoods
return tf.py_func(_neighborhoods_grid_spiral, [adjacency, sequence],
tf.int32, stateful=False,
name='neighborhoods_grid_spiral')
示例12: average_shortest_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def average_shortest_path_length(G, weight=None):
r"""Return the average shortest path length.
The average shortest path length is
.. math::
a =\sum_{s,t \in V} \frac{d(s, t)}{n(n-1)}
where `V` is the set of nodes in `G`,
`d(s, t)` is the shortest path from `s` to `t`,
and `n` is the number of nodes in `G`.
Parameters
----------
G : NetworkX graph
weight : None or string, optional (default = None)
If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.
Raises
------
NetworkXError:
if the graph is not connected.
Examples
--------
>>> G=nx.path_graph(5)
>>> print(nx.average_shortest_path_length(G))
2.0
For disconnected graphs you can compute the average shortest path
length for each component:
>>> G=nx.Graph([(1,2),(3,4)])
>>> for g in nx.connected_component_subgraphs(G):
... print(nx.average_shortest_path_length(g))
1.0
1.0
"""
if G.is_directed():
if not nx.is_weakly_connected(G):
raise nx.NetworkXError("Graph is not connected.")
else:
if not nx.is_connected(G):
raise nx.NetworkXError("Graph is not connected.")
avg=0.0
if weight is None:
for node in G:
path_length=nx.single_source_shortest_path_length(G, node)
avg += sum(path_length.values())
else:
for node in G:
path_length=nx.single_source_dijkstra_path_length(G, node, weight=weight)
avg += sum(path_length.values())
n=len(G)
return avg/(n*(n-1))
示例13: dijkstra_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def dijkstra_path_length(G, source, target, weight='weight'):
"""Returns the shortest path length from source to target
in a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
starting node for path
target : node label
ending node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
length : number
Shortest path length.
Raises
------
NetworkXNoPath
If no path exists between source and target.
Examples
--------
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
4
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
bidirectional_dijkstra()
"""
length = single_source_dijkstra_path_length(G, source, weight=weight)
try:
return length[target]
except KeyError:
raise nx.NetworkXNoPath(
"node %s not reachable from %s" % (source, target))
示例14: single_source_dijkstra_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def single_source_dijkstra_path_length(G, source, cutoff=None,
weight='weight'):
"""Compute the shortest path length between source and all other
reachable nodes for a weighted graph.
Parameters
----------
G : NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight.
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns
-------
length : dictionary
Dictionary of shortest lengths keyed by target.
Examples
--------
>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
See Also
--------
single_source_dijkstra()
"""
if G.is_multigraph():
get_weight = lambda u, v, data: min(
eattr.get(weight, 1) for eattr in data.values())
else:
get_weight = lambda u, v, data: data.get(weight, 1)
return _dijkstra(G, source, get_weight, cutoff=cutoff)
示例15: all_pairs_dijkstra_path_length
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import single_source_dijkstra_path_length [as 別名]
def all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight'):
"""Compute shortest path lengths between all nodes in a weighted graph.
Parameters
----------
G : NetworkX graph
cutoff : integer or float, optional
Depth to stop the search. Only return paths with length <= cutoff.
weight : string or function
If this is a string, then edge weights will be accessed via the
edge attribute with this key (that is, the weight of the edge
joining `u` to `v` will be ``G.edges[u, v][weight]``). If no
such edge attribute exists, the weight of the edge is assumed to
be one.
If this is a function, the weight of an edge is the value
returned by the function. The function must accept exactly three
positional arguments: the two endpoints of an edge and the
dictionary of edge attributes for that edge. The function must
return a number.
Returns
-------
distance : iterator
(source, dictionary) iterator with dictionary keyed by target and
shortest path length as the key value.
Examples
--------
>>> G = nx.path_graph(5)
>>> length = dict(nx.all_pairs_dijkstra_path_length(G))
>>> for node in [0, 1, 2, 3, 4]:
... print('1 - {}: {}'.format(node, length[1][node]))
1 - 0: 1
1 - 1: 0
1 - 2: 1
1 - 3: 2
1 - 4: 3
>>> length[3][2]
1
>>> length[2][2]
0
Notes
-----
Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.
The dictionary returned only has keys for reachable node pairs.
"""
length = single_source_dijkstra_path_length
for n in G:
yield (n, length(G, n, cutoff=cutoff, weight=weight))