當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.simple_cycles方法代碼示例

本文整理匯總了Python中networkx.simple_cycles方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.simple_cycles方法的具體用法?Python networkx.simple_cycles怎麽用?Python networkx.simple_cycles使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.simple_cycles方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: remove_cycles

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def remove_cycles(dag, name2recipes, failed, skip_dependent):
    nodes_in_cycles = set()
    for cycle in list(nx.simple_cycles(dag)):
        logger.error('BUILD ERROR: dependency cycle found: %s', cycle)
        nodes_in_cycles.update(cycle)

    for name in sorted(nodes_in_cycles):
        cycle_fail_recipes = sorted(name2recipes[name])
        logger.error('BUILD ERROR: cannot build recipes for %s since '
                     'it cyclically depends on other packages in the '
                     'current build job. Failed recipes: %s',
                     name, cycle_fail_recipes)
        failed.extend(cycle_fail_recipes)
        for node in nx.algorithms.descendants(dag, name):
            if node not in nodes_in_cycles:
                skip_dependent[node].extend(cycle_fail_recipes)
    return dag.subgraph(name for name in dag if name not in nodes_in_cycles) 
開發者ID:bioconda,項目名稱:bioconda-utils,代碼行數:19,代碼來源:build.py

示例2: remove_cc_with_cycles

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def remove_cc_with_cycles(DG):
    # remove pairend links and unitig links (unoriented)
    edges_to_remove = []
    for edge in DG.edges.data():
        if edge[2]['type'] == '-1M':
            edges_to_remove.append(edge)
            
    for edge in edges_to_remove:
        DG.remove_edge(edge[0],edge[1])
    cycles = list(nx.simple_cycles(DG))
    # sys.stderr.write(f" removed {len(cycles)} cycles\n")    #DEB
    
    # tmpnb=0                                         #DEB
    G=nx.Graph(DG)
    for nodes in cycles:
        first_node_in_cycle = nodes[0]              # get the first node, the other ones in the cycle are in the same CC
        # remove the whole CC:
        CC_with_cycle = nx.node_connected_component(G, first_node_in_cycle)
        for node_id in CC_with_cycle:
            if node_id in DG.nodes():
                # tmpnb+=1                            #DEB
                DG.remove_node(node_id)
    # sys.stderr.write(f" removed {tmpnb} nodes\n")   #DEB 
開發者ID:GATB,項目名稱:DiscoSnp,代碼行數:25,代碼來源:K3000_gfa_post_treatment.py

示例3: _validate

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def _validate(G):
    '''
    Validates dependency graph to ensure it has no missing or cyclic dependencies
    '''
    for name in G.nodes():
        if 'value' not in G.node[name] and 'template' not in G.node[name]:
            msg = 'Dependency unsatisfied in variable "%s"' % name
            raise ParamException(msg)

    if not nx.is_directed_acyclic_graph(G):
        graph_cycles = nx.simple_cycles(G)

        variable_names = []
        for cycle in graph_cycles:
            try:
                variable_name = cycle[0]
            except IndexError:
                continue

            variable_names.append(variable_name)

        variable_names = ', '.join(sorted(variable_names))
        msg = ('Cyclic dependency found in the following variables: %s. Likely the variable is '
               'referencing itself' % (variable_names))
        raise ParamException(msg) 
開發者ID:StackStorm,項目名稱:st2,代碼行數:27,代碼來源:param.py

示例4: dagify_min_edge

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def dagify_min_edge(g):
    """Input a graph and output a DAG.

    The heuristic is to reverse the edge with the lowest score of the cycle
    if possible, else remove it.

    Args:
        g (networkx.DiGraph): Graph to modify to output a DAG

    Returns:
        networkx.DiGraph: DAG made out of the input graph.

    Example:
        >>> from cdt.utils.graph import dagify_min_edge
        >>> import networkx as nx
        >>> import numpy as np
        >>> # Generate sample data
        >>> graph = nx.DiGraph((np.ones(4) - np.eye(4)) *
                               np.random.uniform(size=(4,4)))
        >>> output = dagify_min_edge(graph)
    """
    ncycles = len(list(nx.simple_cycles(g)))
    while not nx.is_directed_acyclic_graph(g):
        cycle = next(nx.simple_cycles(g))
        edges = [(cycle[-1], cycle[0])]
        scores = [(g[cycle[-1]][cycle[0]]['weight'])]
        for i, j in zip(cycle[:-1], cycle[1:]):
            edges.append((i, j))
            scores.append(g[i][j]['weight'])

        i, j = edges[scores.index(min(scores))]
        gc = deepcopy(g)
        gc.remove_edge(i, j)
        gc.add_edge(j, i)
        ngc = len(list(nx.simple_cycles(gc)))
        if ngc < ncycles:
            g.add_edge(j, i, weight=min(scores))
        g.remove_edge(i, j)
        ncycles = ngc
    return g 
開發者ID:FenTechSolutions,項目名稱:CausalDiscoveryToolbox,代碼行數:42,代碼來源:graph.py

示例5: test_simple_graph_with_reported_bug

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def test_simple_graph_with_reported_bug(self):
        G=nx.DiGraph()
        edges = [(0, 2), (0, 3), (1, 0), (1, 3), (2, 1), (2, 4), \
                (3, 2), (3, 4), (4, 0), (4, 1), (4, 5), (5, 0), \
                (5, 1), (5, 2), (5, 3)]
        G.add_edges_from(edges)
        cc=sorted(nx.simple_cycles(G))
        assert_equal(len(cc),26)
        rcc=sorted(nx.recursive_simple_cycles(G))
        assert_equal(len(cc),len(rcc))
        for c in cc:
            assert_true(any(self.is_cyclic_permutation(c,rc) for rc in rcc))
        for rc in rcc:
            assert_true(any(self.is_cyclic_permutation(rc,c) for c in cc))

# These tests might fail with hash randomization since they depend on
# edge_dfs. For more information, see the comments in:
#    networkx/algorithms/traversal/tests/test_edgedfs.py 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:20,代碼來源:test_cycles.py

示例6: test_simple_graph_with_reported_bug

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def test_simple_graph_with_reported_bug(self):
        G = nx.DiGraph()
        edges = [(0, 2), (0, 3), (1, 0), (1, 3), (2, 1), (2, 4),
                 (3, 2), (3, 4), (4, 0), (4, 1), (4, 5), (5, 0),
                 (5, 1), (5, 2), (5, 3)]
        G.add_edges_from(edges)
        cc = sorted(nx.simple_cycles(G))
        assert_equal(len(cc), 26)
        rcc = sorted(nx.recursive_simple_cycles(G))
        assert_equal(len(cc), len(rcc))
        for c in cc:
            assert_true(any(self.is_cyclic_permutation(c, rc) for rc in rcc))
        for rc in rcc:
            assert_true(any(self.is_cyclic_permutation(rc, c) for c in cc))

# These tests might fail with hash randomization since they depend on
# edge_dfs. For more information, see the comments in:
#    networkx/algorithms/traversal/tests/test_edgedfs.py 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:20,代碼來源:test_cycles.py

示例7: is_cycle

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def is_cycle(alert_sub_g: nx.DiGraph, is_ordered: bool = True):
    alert_id = alert_sub_g.graph["alert_id"]
    edges = alert_sub_g.edges(data=True)
    cycles = list(nx.simple_cycles(alert_sub_g))  # Use simple_cycles function directly (subgraph is small enough)
    if len(cycles) != 1:
        logging.info("Alert %s is not a cycle pattern" % alert_id)
        return False
    if is_ordered:
        edges.sort(key=lambda e: e[2]["date"])
        next_orig = None
        next_amt = sys.float_info.max
        next_date = datetime.strptime("1970-01-01", "%Y-%m-%d")
        for orig, bene, attr in edges:
            if next_orig is not None and orig != next_orig:
                logging.info("Alert %s is not a cycle pattern" % alert_id)
                return False
            else:
                next_orig = bene

            amount = attr["amount"]
            if amount == next_amt:
                logging.info("Alert %s cycle transaction amounts are unordered" % alert_id)
                return False
            else:
                next_amt = amount

            date = attr["date"]
            if date < next_date:
                logging.info("Alert %s cycle transactions are chronologically unordered" % alert_id)
                return False
            else:
                next_date = date
    return True 
開發者ID:IBM,項目名稱:AMLSim,代碼行數:35,代碼來源:validate_alerts.py

示例8: getNetProp

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def getNetProp(inGraph):
    '''
    Function to compute properties
    of a given network.
    '''

    # number of weakly connected components in 
    # reference network
    numCC = len(list(nx.weakly_connected_components(inGraph)))
    
    # number of feedback loop 
    # in reference network
    allCyc = nx.simple_cycles(inGraph)
    cycSet = set()
    for cyc in allCyc:
        if len(cyc) == 3:
            cycSet.add(frozenset(cyc))
    
    numFB = len(cycSet)
    
    # number of feedfwd loops
    # in reference network
    allPaths = []
    allPathsSet = set()   
    for u,v in inGraph.edges():
        allPaths = nx.all_simple_paths(inGraph, u, v, cutoff=2)
        for p in allPaths:
            if len(p) >  2:
                allPathsSet.add(frozenset(p))
                
    numFF= len(allPathsSet)
    
    
    # number of mutual interactions
    numMI = 0.0
    for u,v in inGraph.edges():
        if (v,u) in inGraph.edges():
            numMI += 0.5

    return numCC, numFB, numFF, numMI 
開發者ID:Murali-group,項目名稱:Beeline,代碼行數:42,代碼來源:computePathStats.py

示例9: checkInstructionGraphCycles

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def checkInstructionGraphCycles(instructions):
    import networkx as nx

    g = nx.DiGraph()

    for i in instructions:
        g.add_node(i)

        for ix in range(i.flowsToCount()):
            flowsTo = i.flowsTo(ix)
            if flowsTo in instructions:
                g.add_edge(i, flowsTo)

    cycles = nx.simple_cycles(g)

    for c in cycles:
        if not checkCycleHasEntrypoint(c):
            print "************************************"
            print "No entrypoint in the following cycle: "
            for i in c:
                print i
                print "children:"
                for sub in i.children():
                    print "\t", repr(sub)
            print "************************************"
        else:
            print "************************************"
            print "cycle with ", len(c), " is OK"
            for i in c:
                if i.getTypedJumpTarget():
                    print "*** ",
                else:
                    print "    ",
                print repr(i)
            print "************************************" 
開發者ID:ufora,項目名稱:ufora,代碼行數:37,代碼來源:InstructionGraph.py

示例10: _detect_loops

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def _detect_loops(self):
        temp_graph = networkx.DiGraph()
        for source, target_list in self._cfg._edge_map.items():
            for target in target_list:
                temp_graph.add_edge(source, target)
        ctr = 0
        for loop_lst in networkx.simple_cycles(temp_graph):
            l.debug("A loop is found. %d", ctr)
            ctr += 1
            loop = (tuple([x[-1] for x in loop_lst]))
            print(" => ".join(["0x%08x" % x for x in loop]))
            self.add_loop(loop) 
開發者ID:angr,項目名稱:angr,代碼行數:14,代碼來源:annocfg.py

示例11: cmd_cycles

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def cmd_cycles(handle, args):
    g = retrieve_filtered_graph(handle, args)

    cycles = nx.simple_cycles(g)
    print(list(cycles)) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:7,代碼來源:ogr.py

示例12: _validate

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def _validate(self):
        # graph is acyclic
        cycles = nx.simple_cycles(self.nx_graph)
        try:
            cycle = next(cycles)
        except StopIteration:
            pass
        else:
            raise GraphCyclicError(
                'Graph is not acyclic, contains a cycle {}'.format(cycle)) 
開發者ID:deep-fry,項目名稱:mayo,代碼行數:12,代碼來源:graph.py

示例13: find_memcmp_like

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def find_memcmp_like(p, cfg):
    memcpy_like = [f.addr for f in cfg.functions.values() if 'memcmp' in f.name]
    tots = []
    for fun in cfg.functions.values():
        css = []

        try:
            no = cfg.get_any_node(fun.addr)
            css = [pred for pred in no.predecessors]
        except:
            pass

        if css == []:
            continue

        cs = css[0]
        args = get_ord_arguments_call(p, cs.addr)
        if len(args) > 3 or len(args) < 2:
            continue

        for loop in [x for x in networkx.simple_cycles(fun.graph)]:
            # CMPNE or CMPEQ
            if any([op for l in loop for op in p.factory.block(l.addr).vex.operations if 'cmpeq' in op.lower() or 'cmpne' in op.lower()]):
                tots.append(hex(fun.addr))
                # INCREMENT
                wr_tmp = [st for l in loop for st in p.factory.block(l.addr).vex.statements if st.tag == 'Ist_WrTmp']
                cons = [w.constants for w in wr_tmp if hasattr(w, 'data') and hasattr(w.data, 'op') and w.data.op == 'Iop_Add64']
                if cons:
                    cons = [c.value for cs in cons for c in cs]
                # using BootStomp thresholds
                if 1 in cons and len([x for x in fun.blocks]) <= 8:
                    memcpy_like.append(fun.addr)
    return list(set(memcpy_like))


# FIXME: to finish 
開發者ID:ucsb-seclab,項目名稱:karonte,代碼行數:38,代碼來源:utils.py

示例14: find_memcpy_like

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def find_memcpy_like(p, cfg=None):
    memcpy_like = [f.addr for f in p.kb.functions.values() if 'memcpy' in f.name]
    if cfg is None:
        return memcpy_like

    tots = []
    for fun in cfg.functions.values():
        css = []

        try:
            no = cfg.get_any_node(fun.addr)
            css = [pred for pred in no.predecessors]
        except:
            pass

        if css == []:
            continue

        cs = css[0]
        args = get_ord_arguments_call(p, cs.addr)
        if len(args) > 3 or len(args) < 2:
            continue

        for loop in [x for x in networkx.simple_cycles(fun.graph)]:
            # CMPNE or CMPEQ
            if any([op for l in loop for op in p.factory.block(l.addr).vex.operations if 'cmpeq' in op.lower() or 'cmpne' in op.lower()]):
                tots.append(hex(fun.addr))
                # INCREMENT
                wr_tmp = [st for l in loop for st in p.factory.block(l.addr).vex.statements if st.tag == 'Ist_WrTmp']
                cons = [w.constants for w in wr_tmp if hasattr(w, 'data') and hasattr(w.data, 'op') and w.data.op == 'Iop_Add64']
                if cons:
                    cons = [c.value for cs in cons for c in cs]
                # using BootStomp thresholds
                if 1 in cons and len([x for x in fun.blocks]) <= 8:
                    memcpy_like.append(fun.addr)

    return list(set(memcpy_like)) 
開發者ID:ucsb-seclab,項目名稱:karonte,代碼行數:39,代碼來源:utils.py

示例15: find_cycles

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import simple_cycles [as 別名]
def find_cycles(self):
        duplicate_cycles = list(nx.simple_cycles(self.digraph))
        all_cycles = set()
        final_cycles = []
        for i in duplicate_cycles:
            sorted = []
            for node in i:
                sorted.append(node)
            sorted.sort()
            sorted = tuple(sorted)
            if not (sorted in all_cycles):
                all_cycles.add(sorted)
                final_cycles.append(i)
        return final_cycles 
開發者ID:NREL,項目名稱:ditto,代碼行數:16,代碼來源:network.py


注:本文中的networkx.simple_cycles方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。