本文整理匯總了Python中networkx.shell_layout方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.shell_layout方法的具體用法?Python networkx.shell_layout怎麽用?Python networkx.shell_layout使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.shell_layout方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def plot_graph(G, ax=None):
"""
Plots a networkx graph.
Parameters
----------
G:
The networkx graph of interest.
ax: Matplotlib axes object
Defaults to None. Matplotlib axes to plot on.
"""
weights = np.real([*nx.get_edge_attributes(G, 'weight').values()])
pos = nx.shell_layout(G)
nx.draw(G, pos, node_color='#A0CBE2', with_labels=True, edge_color=weights,
width=4, edge_cmap=plt.cm.Blues, ax=ax)
plt.show()
#############################################################################
# HAMILTONIANS AND DATA
#############################################################################
示例2: draw_shell
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def draw_shell(G, **kwargs):
"""Draw networkx graph with shell layout.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See hvplot.networkx.draw() for a description of optional
keywords, with the exception of the pos parameter which is not
used by this function.
Returns
-------
graph : holoviews.Graph or holoviews.Overlay
Graph element or Graph and Labels
"""
nlist = kwargs.pop('nlist', None)
if nlist is not None:
kwargs['layout_kwargs'] = {'nlist': nlist}
return draw(G, nx.shell_layout, **kwargs)
示例3: test_smoke_int
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_smoke_int(self):
G = self.Gi
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.planar_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.fruchterman_reingold_layout(self.bigG)
vpos = nx.spectral_layout(G)
vpos = nx.spectral_layout(G.to_directed())
vpos = nx.spectral_layout(self.bigG)
vpos = nx.spectral_layout(self.bigG.to_directed())
vpos = nx.shell_layout(G)
if self.scipy is not None:
vpos = nx.kamada_kawai_layout(G)
vpos = nx.kamada_kawai_layout(G, dim=1)
示例4: test_empty_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_empty_graph(self):
G = nx.empty_graph()
vpos = nx.random_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.circular_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.planar_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.bipartite_layout(G, G)
assert_equal(vpos, {})
vpos = nx.spring_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.spectral_layout(G, center=(1, 1))
assert_equal(vpos, {})
vpos = nx.shell_layout(G, center=(1, 1))
assert_equal(vpos, {})
示例5: plot_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def plot_graph(G, filename='prova.png', values=None, colorbar_obj=None):
func_types_dic = {
'spring' : nx.spring_layout,
'random' : nx.random_layout,
'shell' : nx.shell_layout,
'spectral' : nx.spectral_layout,
'viz' : graphviz_layout
}
print(G.edges())
print(G.nodes())
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
color_nodes = [values.get(node, 0.2) for node in G.nodes()]
pos = func_types_dic[params.plot_type_str](G)
nodes = nx.draw_networkx_nodes(G, pos, node_color=color_nodes, \
alpha=.6)#, cmap=plt.get_cmap('brg'))
nx.draw_networkx_edges(G, pos, width=2.)
nx.draw_networkx_labels(G, pos, font_color='k', font_weight='10')
plt.title("|V| = %d, |E| = %d"%(len(G.nodes()), len(G.edges())))
colorbar_obj.set_array(color_nodes)
plt.colorbar(colorbar_obj)
plt.axis('off')
fig.savefig(filename, format='png')
plt.close()
示例6: test_smoke_int
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_smoke_int(self):
G=self.Gi
vpos=nx.random_layout(G)
vpos=nx.circular_layout(G)
vpos=nx.spring_layout(G)
vpos=nx.fruchterman_reingold_layout(G)
vpos=nx.spectral_layout(G)
vpos=nx.spectral_layout(self.bigG)
vpos=nx.shell_layout(G)
示例7: test_smoke_string
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_smoke_string(self):
G = self.Gs
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.spectral_layout(G)
vpos = nx.shell_layout(G)
示例8: test_empty_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_empty_graph(self):
G=nx.Graph()
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.shell_layout(G)
vpos = nx.spectral_layout(G)
# center arg
vpos = nx.random_layout(G, scale=2, center=(4,5))
vpos = nx.circular_layout(G, scale=2, center=(4,5))
vpos = nx.spring_layout(G, scale=2, center=(4,5))
vpos = nx.shell_layout(G, scale=2, center=(4,5))
vpos = nx.spectral_layout(G, scale=2, center=(4,5))
示例9: test_single_node
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_single_node(self):
G = nx.Graph()
G.add_node(0)
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.shell_layout(G)
vpos = nx.spectral_layout(G)
# center arg
vpos = nx.random_layout(G, scale=2, center=(4,5))
vpos = nx.circular_layout(G, scale=2, center=(4,5))
vpos = nx.spring_layout(G, scale=2, center=(4,5))
vpos = nx.shell_layout(G, scale=2, center=(4,5))
vpos = nx.spectral_layout(G, scale=2, center=(4,5))
示例10: test_scale_and_center_arg
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_scale_and_center_arg(self):
G = nx.complete_graph(9)
G.add_node(9)
vpos = nx.random_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2, center=(4,5))
vpos = nx.spring_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2, center=(4,5))
vpos = nx.spectral_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2, center=(4,5))
# circular can have twice as big length
vpos = nx.circular_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2*2, center=(4,5))
vpos = nx.shell_layout(G, scale=2, center=(4,5))
self.check_scale_and_center(vpos, scale=2*2, center=(4,5))
# check default center and scale
vpos = nx.random_layout(G)
self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
vpos = nx.spring_layout(G)
self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
vpos = nx.spectral_layout(G)
self.check_scale_and_center(vpos, scale=1, center=(0.5,0.5))
vpos = nx.circular_layout(G)
self.check_scale_and_center(vpos, scale=2, center=(0,0))
vpos = nx.shell_layout(G)
self.check_scale_and_center(vpos, scale=2, center=(0,0))
示例11: test_smoke_empty_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_smoke_empty_graph(self):
G = []
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.planar_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.spectral_layout(G)
vpos = nx.shell_layout(G)
vpos = nx.bipartite_layout(G, G)
if self.scipy is not None:
vpos = nx.kamada_kawai_layout(G)
示例12: test_smoke_string
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_smoke_string(self):
G = self.Gs
vpos = nx.random_layout(G)
vpos = nx.circular_layout(G)
vpos = nx.planar_layout(G)
vpos = nx.spring_layout(G)
vpos = nx.fruchterman_reingold_layout(G)
vpos = nx.spectral_layout(G)
vpos = nx.shell_layout(G)
if self.scipy is not None:
vpos = nx.kamada_kawai_layout(G)
vpos = nx.kamada_kawai_layout(G, dim=1)
示例13: test_scale_and_center_arg
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_scale_and_center_arg(self):
sc = self.check_scale_and_center
c = (4, 5)
G = nx.complete_graph(9)
G.add_node(9)
sc(nx.random_layout(G, center=c), scale=0.5, center=(4.5, 5.5))
# rest can have 2*scale length: [-scale, scale]
sc(nx.spring_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.spectral_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.circular_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.shell_layout(G, scale=2, center=c), scale=2, center=c)
if self.scipy is not None:
sc(nx.kamada_kawai_layout(G, scale=2, center=c), scale=2, center=c)
示例14: test_default_scale_and_center
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_default_scale_and_center(self):
sc = self.check_scale_and_center
c = (0, 0)
G = nx.complete_graph(9)
G.add_node(9)
sc(nx.random_layout(G), scale=0.5, center=(0.5, 0.5))
sc(nx.spring_layout(G), scale=1, center=c)
sc(nx.spectral_layout(G), scale=1, center=c)
sc(nx.circular_layout(G), scale=1, center=c)
sc(nx.shell_layout(G), scale=1, center=c)
if self.scipy is not None:
sc(nx.kamada_kawai_layout(G), scale=1, center=c)
示例15: test_single_nodes
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import shell_layout [as 別名]
def test_single_nodes(self):
G = nx.path_graph(1)
vpos = nx.shell_layout(G)
assert_false(vpos[0].any())
G = nx.path_graph(3)
vpos = nx.shell_layout(G, [[0], [1, 2]])
assert_false(vpos[0].any())