本文整理匯總了Python中networkx.random_regular_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.random_regular_graph方法的具體用法?Python networkx.random_regular_graph怎麽用?Python networkx.random_regular_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.random_regular_graph方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate_eulerian_circuit_data
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import random_regular_graph [as 別名]
def generate_eulerian_circuit_data(options):
while True:
num_nodes = options["num_entities"]
g = nx.random_regular_graph(2, num_nodes)
try:
path = list(nxalg.eulerian_circuit(g))
except:
continue
# print path
break
for edge in g.edges():
print "%s connected-to %s" % (edge[0], edge[1])
print "%s connected-to %s" % (edge[1], edge[0])
first_edge = path[0]
node_list = [str(edge[0]) for edge in path]
print "eval eulerian-circuit %s %s\t%s" % (first_edge[0], first_edge[1],
",".join(node_list))
##################### noisy data #######################
示例2: generate_noisy_eulerian_circuit_data
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import random_regular_graph [as 別名]
def generate_noisy_eulerian_circuit_data(options):
"""
This is a noisy version of the eularian circuit problem.
"""
while True:
num_nodes = options["num_entities"]
g = nx.random_regular_graph(2, num_nodes)
try:
path = list(nxalg.eulerian_circuit(g))
except:
continue
break
edges = g.edges()
# generate another misleading cycle
num_confusing = options["num_confusing"]
if num_confusing > 0:
g_confusing = nx.random_regular_graph(2, num_confusing)
for e in g_confusing.edges():
edges.append((e[0] + num_nodes, e[1] + num_nodes))
random.shuffle(edges)
# randomize index
idx = _generate_random_node_index(num_nodes + num_confusing)
new_edges = _relabel_nodes_in_edges(edges, idx)
new_path = _relabel_nodes_in_edges(path, idx)
for edge in new_edges:
print "%s connected-to %s" % (edge[0], edge[1])
print "%s connected-to %s" % (edge[1], edge[0])
first_edge = new_path[0]
node_list = [str(edge[0]) for edge in new_path]
print "eval eulerian-circuit %s %s\t%s" % (first_edge[0], first_edge[1],
",".join(node_list))
示例3: test_graph6
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import random_regular_graph [as 別名]
def test_graph6():
graph0 = nx.random_regular_graph(4, 10)
g0 = to_graph6(graph0)
graph1 = from_graph6(g0)
g1 = to_graph6(graph1)
assert g0 == g1
示例4: random_k_regular_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import random_regular_graph [as 別名]
def random_k_regular_graph(degree: int,
nodes: List[Union[int, QubitPlaceholder]],
seed: int = None,
weighted: bool = False,
biases: bool = False) -> nx.Graph:
"""
Produces a random graph with specified number of nodes, each having degree k.
Parameters
----------
degree:
Desired degree for the nodes
nodes:
The node set of the graph. Can be anything that works as a qubit for
PauliSums.
seed:
A seed for the random number generator
weighted:
Whether the edge weights should be uniform or different. If false, all weights are set to 1.
If true, the weight is set to a random number drawn from the uniform distribution in the interval 0 to 1.
If true, the weight is set to a random number drawn from the uniform
distribution in the interval 0 to 1.
biases:
Whether or not the graph nodes should be assigned a weight.
If true, the weight is set to a random number drawn from the uniform
distribution in the interval 0 to 1.
Returns
-------
nx.Graph:
A graph with the properties as specified.
"""
np.random.seed(seed=seed)
# create a random regular graph on the nodes
G = nx.random_regular_graph(degree, len(nodes), seed)
nx.relabel_nodes(G, {i: n for i, n in enumerate(nodes)})
for edge in G.edges():
if not weighted:
G[edge[0]][edge[1]]['weight'] = 1
else:
G[edge[0]][edge[1]]['weight'] = np.random.rand()
if biases:
for node in G.nodes():
G.node[node]['weight'] = np.random.rand()
return G
示例5: _cli
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import random_regular_graph [as 別名]
def _cli():
parser = argparse.ArgumentParser(
description=__description__)
parser.add_argument('--version', action='version', version=__version__)
parser.add_argument('-d', '--degree', type=float, action='store',
help='Degree')
parser.add_argument('--family', type=str, action='store', default='er',
help='Graph family')
parser.add_argument('N', type=int, action='store', help='Nodes')
parser.add_argument('S', type=int, action='store', help='Samples')
parser.add_argument('fout', action='store',
metavar='OUT_FILE', help='Write graphs to file')
opts = vars(parser.parse_args())
N = opts.pop('N')
S = opts.pop('S')
fout = opts.pop('fout')
degree = opts.pop('degree')
family = opts.pop('family')
assert family in {'er', 'reg'}
if family == 'reg':
assert degree is not None
degree = int(degree)
with open(fout, 'w') as file:
for _ in range(S):
if family == 'er':
graph = nx.gnp_random_graph(N, 0.5)
elif family == 'reg':
graph = nx.random_regular_graph(int(degree), N)
else:
assert False
file.write(to_graph6(graph))
file.write('\n')