本文整理匯總了Python中networkx.non_edges方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.non_edges方法的具體用法?Python networkx.non_edges怎麽用?Python networkx.non_edges使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.non_edges方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_non_edges
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def test_non_edges(self):
# All possible edges exist
graph = nx.complete_graph(5)
nedges = list(nx.non_edges(graph))
assert_equal(len(nedges), 0)
graph = nx.path_graph(4)
expected = [(0, 2), (0, 3), (1, 3)]
nedges = list(nx.non_edges(graph))
for (u, v) in expected:
assert_true( (u, v) in nedges or (v, u) in nedges )
graph = nx.star_graph(4)
expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
nedges = list(nx.non_edges(graph))
for (u, v) in expected:
assert_true( (u, v) in nedges or (v, u) in nedges )
# Directed graphs
graph = nx.DiGraph()
graph.add_edges_from([(0, 2), (2, 0), (2, 1)])
expected = [(0, 1), (1, 0), (1, 2)]
nedges = list(nx.non_edges(graph))
for e in expected:
assert_true(e in nedges)
示例2: test_non_edges
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def test_non_edges(self):
# All possible edges exist
graph = nx.complete_graph(5)
nedges = list(nx.non_edges(graph))
assert_equal(len(nedges), 0)
graph = nx.path_graph(4)
expected = [(0, 2), (0, 3), (1, 3)]
nedges = list(nx.non_edges(graph))
for (u, v) in expected:
assert_true((u, v) in nedges or (v, u) in nedges)
graph = nx.star_graph(4)
expected = [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
nedges = list(nx.non_edges(graph))
for (u, v) in expected:
assert_true((u, v) in nedges or (v, u) in nedges)
# Directed graphs
graph = nx.DiGraph()
graph.add_edges_from([(0, 2), (2, 0), (2, 1)])
expected = [(0, 1), (1, 0), (1, 2)]
nedges = list(nx.non_edges(graph))
for e in expected:
assert_true(e in nedges)
示例3: _apply_prediction
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def _apply_prediction(G, func, ebunch=None):
"""Applies the given function to each edge in the specified iterable
of edges.
`G` is an instance of :class:`networkx.Graph`.
`func` is a function on two inputs, each of which is a node in the
graph. The function can return anything, but it should return a
value representing a prediction of the likelihood of a "link"
joining the two nodes.
`ebunch` is an iterable of pairs of nodes. If not specified, all
non-edges in the graph `G` will be used.
"""
if ebunch is None:
ebunch = nx.non_edges(G)
return ((u, v, func(u, v)) for u, v in ebunch)
示例4: make_train_test_set
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def make_train_test_set(graph, radius,
test_proportion=.3, ratio_neg_to_pos=10):
"""make_train_test_set."""
pos = [(u, v) for u, v in graph.edges()]
neg = [(u, v) for u, v in nx.non_edges(graph)]
random.shuffle(pos)
random.shuffle(neg)
pos_dim = len(pos)
neg_dim = len(neg)
max_n_neg = min(pos_dim * ratio_neg_to_pos, neg_dim)
neg = neg[:max_n_neg]
neg_dim = len(neg)
tr_pos = pos[:-int(pos_dim * test_proportion)]
te_pos = pos[-int(pos_dim * test_proportion):]
tr_neg = neg[:-int(neg_dim * test_proportion)]
te_neg = neg[-int(neg_dim * test_proportion):]
# remove edges
tr_graph = graph.copy()
tr_graph.remove_edges_from(te_pos)
tr_pos_graphs = list(_make_subgraph_set(tr_graph, radius, tr_pos))
tr_neg_graphs = list(_make_subgraph_set(tr_graph, radius, tr_neg))
te_pos_graphs = list(_make_subgraph_set(tr_graph, radius, te_pos))
te_neg_graphs = list(_make_subgraph_set(tr_graph, radius, te_neg))
tr_graphs = tr_pos_graphs + tr_neg_graphs
te_graphs = te_pos_graphs + te_neg_graphs
tr_targets = [1] * len(tr_pos_graphs) + [0] * len(tr_neg_graphs)
te_targets = [1] * len(te_pos_graphs) + [0] * len(te_neg_graphs)
tr_graphs, tr_targets = paired_shuffle(tr_graphs, tr_targets)
te_graphs, te_targets = paired_shuffle(te_graphs, te_targets)
return (tr_graphs, np.array(tr_targets)), (te_graphs, np.array(te_targets))
示例5: show_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def show_graph(g, vertex_color='typeof', size=15, vertex_label=None):
"""show_graph."""
degrees = [len(g.neighbors(u)) for u in g.nodes()]
print(('num nodes=%d' % len(g)))
print(('num edges=%d' % len(g.edges())))
print(('num non edges=%d' % len(list(nx.non_edges(g)))))
print(('max degree=%d' % max(degrees)))
print(('median degree=%d' % np.percentile(degrees, 50)))
draw_graph(g, size=size,
vertex_color=vertex_color, vertex_label=vertex_label,
vertex_size=200, edge_label=None)
# display degree distribution
size = int((max(degrees) - min(degrees)) / 1.5)
plt.figure(figsize=(size, 3))
plt.title('Degree distribution')
_bins = np.arange(min(degrees), max(degrees) + 2) - .5
n, bins, patches = plt.hist(degrees, _bins,
alpha=0.3,
facecolor='navy', histtype='bar',
rwidth=0.8, edgecolor='k')
labels = np.array([str(int(i)) for i in n])
for xi, yi, label in zip(bins, n, labels):
plt.text(xi + 0.5, yi, label, ha='center', va='bottom')
plt.xticks(bins + 0.5)
plt.xlim((min(degrees) - 1, max(degrees) + 1))
plt.ylim((0, max(n) * 1.1))
plt.xlabel('Node degree')
plt.ylabel('Counts')
plt.grid(linestyle=":")
plt.show()
示例6: _getall_false_edges
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def _getall_false_edges(G, fe_train_frac):
print("Generating all non-edges and splitting them in train and test...")
train_E_false = list()
test_E_false = list()
for e in nx.non_edges(G):
r = random.uniform(0, 1)
if r <= fe_train_frac:
train_E_false.append(e)
else:
test_E_false.append(e)
return train_E_false, test_E_false
示例7: inter_community_non_edges
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def inter_community_non_edges(G, partition):
"""Returns the number of inter-community non-edges according to the
given partition of the nodes of `G`.
`G` must be a NetworkX graph.
`partition` must be a partition of the nodes of `G`.
A *non-edge* is a pair of nodes (undirected if `G` is undirected)
that are not adjacent in `G`. The *inter-community non-edges* are
those non-edges on a pair of nodes in different blocks of the
partition.
Implementation note: this function creates two intermediate graphs,
which may require up to twice the amount of memory as required to
store `G`.
"""
# Alternate implementation that does not require constructing two
# new graph objects (but does require constructing an affiliation
# dictionary):
#
# aff = dict(chain.from_iterable(((v, block) for v in block)
# for block in partition))
# return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v])
#
return inter_community_edges(nx.complement(G), partition)
示例8: resource_allocation_index
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def resource_allocation_index(G, ebunch=None):
r"""Compute the resource allocation index of all node pairs in ebunch.
Resource allocation index of `u` and `v` is defined as
.. math::
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}
where :math:`\Gamma(u)` denotes the set of neighbors of `u`.
Parameters
----------
G : graph
A NetworkX undirected graph.
ebunch : iterable of node pairs, optional (default = None)
Resource allocation index will be computed for each pair of
nodes given in the iterable. The pairs must be given as
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used.
Default value: None.
Returns
-------
piter : iterator
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their resource allocation index.
Examples
--------
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.75000000'
'(2, 3) -> 0.75000000'
References
----------
.. [1] T. Zhou, L. Lu, Y.-C. Zhang.
Predicting missing links via local information.
Eur. Phys. J. B 71 (2009) 623.
http://arxiv.org/pdf/0901.0553.pdf
"""
if ebunch is None:
ebunch = nx.non_edges(G)
def predict(u, v):
return sum(1 / G.degree(w) for w in nx.common_neighbors(G, u, v))
return ((u, v, predict(u, v)) for u, v in ebunch)
示例9: jaccard_coefficient
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def jaccard_coefficient(G, ebunch=None):
r"""Compute the Jaccard coefficient of all node pairs in ebunch.
Jaccard coefficient of nodes `u` and `v` is defined as
.. math::
\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}
where :math:`\Gamma(u)` denotes the set of neighbors of `u`.
Parameters
----------
G : graph
A NetworkX undirected graph.
ebunch : iterable of node pairs, optional (default = None)
Jaccard coefficient will be computed for each pair of nodes
given in the iterable. The pairs must be given as 2-tuples
(u, v) where u and v are nodes in the graph. If ebunch is None
then all non-existent edges in the graph will be used.
Default value: None.
Returns
-------
piter : iterator
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their Jaccard coefficient.
Examples
--------
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.60000000'
'(2, 3) -> 0.60000000'
References
----------
.. [1] D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
"""
if ebunch is None:
ebunch = nx.non_edges(G)
def predict(u, v):
cnbors = list(nx.common_neighbors(G, u, v))
union_size = len(set(G[u]) | set(G[v]))
if union_size == 0:
return 0
else:
return len(cnbors) / union_size
return ((u, v, predict(u, v)) for u, v in ebunch)
示例10: adamic_adar_index
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def adamic_adar_index(G, ebunch=None):
r"""Compute the Adamic-Adar index of all node pairs in ebunch.
Adamic-Adar index of `u` and `v` is defined as
.. math::
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}
where :math:`\Gamma(u)` denotes the set of neighbors of `u`.
Parameters
----------
G : graph
NetworkX undirected graph.
ebunch : iterable of node pairs, optional (default = None)
Adamic-Adar index will be computed for each pair of nodes given
in the iterable. The pairs must be given as 2-tuples (u, v)
where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.
Returns
-------
piter : iterator
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their Adamic-Adar index.
Examples
--------
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 2.16404256'
'(2, 3) -> 2.16404256'
References
----------
.. [1] D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
"""
if ebunch is None:
ebunch = nx.non_edges(G)
def predict(u, v):
return sum(1 / math.log(G.degree(w))
for w in nx.common_neighbors(G, u, v))
return ((u, v, predict(u, v)) for u, v in ebunch)
示例11: preferential_attachment
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import non_edges [as 別名]
def preferential_attachment(G, ebunch=None):
r"""Compute the preferential attachment score of all node pairs in ebunch.
Preferential attachment score of `u` and `v` is defined as
.. math::
|\Gamma(u)| |\Gamma(v)|
where :math:`\Gamma(u)` denotes the set of neighbors of `u`.
Parameters
----------
G : graph
NetworkX undirected graph.
ebunch : iterable of node pairs, optional (default = None)
Preferential attachment score will be computed for each pair of
nodes given in the iterable. The pairs must be given as
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used.
Default value: None.
Returns
-------
piter : iterator
An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their preferential attachment score.
Examples
--------
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 1) -> 16'
'(2, 3) -> 16'
References
----------
.. [1] D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
"""
if ebunch is None:
ebunch = nx.non_edges(G)
return ((u, v, G.degree(u) * G.degree(v)) for u, v in ebunch)