當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.nodes方法代碼示例

本文整理匯總了Python中networkx.nodes方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.nodes方法的具體用法?Python networkx.nodes怎麽用?Python networkx.nodes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.nodes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_from_recipes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def build_from_recipes(recipes):
    logger.info("Building Recipe DAG")

    package2recipes = {}
    recipe_list = []
    for recipe in recipes:
        for package in recipe.package_names:
            package2recipes.setdefault(package, set()).add(recipe)
            recipe_list.append(recipe)

    dag = nx.DiGraph()
    dag.add_nodes_from(recipe.reldir for recipe in recipes)
    dag.add_edges_from(
        (recipe2, recipe)
        for recipe in recipe_list
        for dep in recipe.get_deps()
        for recipe2 in package2recipes.get(dep, [])
    )

    logger.info("Building Recipe DAG: done (%i nodes, %i edges)", len(dag), len(dag.edges()))
    return dag 
開發者ID:bioconda,項目名稱:bioconda-utils,代碼行數:23,代碼來源:graph.py

示例2: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def __init__(self, nx_G, is_directed, args):
        """
        Constructor for SecondOrderRandomWalker.
        :param  nx_G: Nx graph object.
        :param is_directed: Directed nature of the graph -- True/False.
        :param args: Arguments object.
        """
        self.G = nx_G
        self.nodes = nx.nodes(self.G)
        print("Edge weighting.\n")
        for edge in tqdm(self.G.edges()):
            self.G[edge[0]][edge[1]]['weight'] = 1.0
            self.G[edge[1]][edge[0]]['weight'] = 1.0
        self.is_directed = is_directed
        self.walk_length = args.walk_length
        self.walk_number = args.walk_number
        self.p = args.P
        self.q = args.Q 
開發者ID:benedekrozemberczki,項目名稱:walklets,代碼行數:20,代碼來源:walkers.py

示例3: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def __init__(self, G, p, q, num_walks, walk_length):
        """
        :param G: NetworkX graph object.
        :param p: Return parameter.
        :param q: In-out parameter.
        :param num_walks: Number of walks per source node.
        :param walk_length: Random walk length.
        """
        self.G = G
        self.nodes = nx.nodes(self.G)
        print("Edge weighting.\n")
        for edge in tqdm(self.G.edges()):
            self.G[edge[0]][edge[1]]['weight'] = 1.0
            self.G[edge[1]][edge[0]]['weight'] = 1.0
        self.p = p
        self.q = q
        self.num_walks = num_walks
        self.walk_length = walk_length
        self.preprocess_transition_probs()
        self.simulate_walks() 
開發者ID:benedekrozemberczki,項目名稱:MUSAE,代碼行數:22,代碼來源:walkers.py

示例4: preprocess_transition_probs

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def preprocess_transition_probs(self):
        """
        Preprocessing of transition probabilities for guiding the random walks.
        """
        G = self.G

        alias_nodes = {}
        print("")
        print("Preprocesing.\n")
        for node in tqdm(G.nodes()):
            unnormalized_probs = [G[node][nbr]['weight'] for nbr in sorted(G.neighbors(node))]
            norm_const = sum(unnormalized_probs)
            normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
            alias_nodes[node] = alias_setup(normalized_probs)

        alias_edges = {}
        triads = {}

        for edge in tqdm(G.edges()):
            alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
            alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0])

        self.alias_nodes = alias_nodes
        self.alias_edges = alias_edges
        print("\n") 
開發者ID:benedekrozemberczki,項目名稱:MUSAE,代碼行數:27,代碼來源:walkers.py

示例5: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def __init__(self, graph=None, network_filename=None, epsilon=0.25, min_community_size=3, file_output=None):
        """
        Constructor

        :@param network_filename: the networkx filename
        :@param epsilon: the tolerance required in order to merge communities
        :@param min_community_size:min nodes needed to form a community
        :@param file_output: True/False
        """
        if graph is None:
            self.g = nx.Graph()
            if network_filename is not None:
                self.__read_graph(network_filename)
            else:
                raise ImportError
        else:
            self.g = graph
        self.epsilon = epsilon
        self.min_community_size = min_community_size
        self.file_output = file_output
        self.base = os.getcwd() 
開發者ID:GiulioRossetti,項目名稱:DEMON,代碼行數:23,代碼來源:Demon.py

示例6: simulate_walks

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def simulate_walks(self, num_walks, walk_length):
        """
        Repeatedly simulate random walks from each node.
        """
        G = self.G
        walks = []
        nodes = list(G.nodes())
        for walk_iter in range(num_walks):
            print(" ")
            print("Random walk series " + str(walk_iter+1) + ". initiated.")
            print(" ")
            random.shuffle(nodes)
            for node in tqdm(nodes):
                walks.append(self.node2vec_walk(walk_length=walk_length, start_node=node))

        return walks, self.count_frequency_values(walks) 
開發者ID:benedekrozemberczki,項目名稱:GEMSEC,代碼行數:18,代碼來源:calculation_helper.py

示例7: test_info

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_info(self):
        G=nx.path_graph(5)
        info=nx.info(G)
        expected_graph_info='\n'.join(['Name: path_graph(5)',
                                       'Type: Graph',
                                       'Number of nodes: 5',
                                       'Number of edges: 4',
                                       'Average degree:   1.6000'])
        assert_equal(info,expected_graph_info)

        info=nx.info(G,n=1)
        expected_node_info='\n'.join(
            ['Node 1 has the following properties:',
             'Degree: 2',
             'Neighbors: 0 2'])
        assert_equal(info,expected_node_info) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:18,代碼來源:test_function.py

示例8: test_info_digraph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_info_digraph(self):
        G=nx.DiGraph(name='path_graph(5)')
        G.add_path([0,1,2,3,4])
        info=nx.info(G)
        expected_graph_info='\n'.join(['Name: path_graph(5)',
                                       'Type: DiGraph',
                                       'Number of nodes: 5',
                                       'Number of edges: 4',
                                       'Average in degree:   0.8000',
                                       'Average out degree:   0.8000'])
        assert_equal(info,expected_graph_info)

        info=nx.info(G,n=1)
        expected_node_info='\n'.join(
            ['Node 1 has the following properties:',
             'Degree: 2',
             'Neighbors: 2'])
        assert_equal(info,expected_node_info)

        assert_raises(nx.NetworkXError,nx.info,G,n=-1) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:22,代碼來源:test_function.py

示例9: test_neighbors

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_neighbors(self):
        graph = nx.complete_graph(100)
        pop = random.sample(graph.nodes(), 1)
        nbors = list(nx.neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), len(graph) - 1)

        graph = nx.path_graph(100)
        node = random.sample(graph.nodes(), 1)[0]
        nbors = list(nx.neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 2)
        else:
            assert_equal(len(nbors), 1)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.neighbors(graph, 0))
        assert_equal(len(nbors), 99) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:22,代碼來源:test_function.py

示例10: test_set_node_attributes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_set_node_attributes():
    graphs = [nx.Graph(), nx.DiGraph(), nx.MultiGraph(), nx.MultiDiGraph()]
    for G in graphs:
        G = nx.path_graph(3, create_using=G)

        # Test single value
        attr = 'hello'
        vals = 100
        nx.set_node_attributes(G, attr, vals)
        assert_equal(G.node[0][attr], vals)
        assert_equal(G.node[1][attr], vals)
        assert_equal(G.node[2][attr], vals)

        # Test multiple values
        attr = 'hi'
        vals = dict(zip(sorted(G.nodes()), range(len(G))))
        nx.set_node_attributes(G, attr, vals)
        assert_equal(G.node[0][attr], 0)
        assert_equal(G.node[1][attr], 1)
        assert_equal(G.node[2][attr], 2) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:22,代碼來源:test_function.py

示例11: test_add_star

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_add_star(self):
        G = self.G.copy()
        nlist = [12, 13, 14, 15]
        nx.add_star(G, nlist)
        assert_edges_equal(G.edges(nlist), [(12, 13), (12, 14), (12, 15)])

        G = self.G.copy()
        nx.add_star(G, nlist, weight=2.0)
        assert_edges_equal(G.edges(nlist, data=True),
                           [(12, 13, {'weight': 2.}),
                            (12, 14, {'weight': 2.}),
                            (12, 15, {'weight': 2.})])

        G = self.G.copy()
        nlist = [12]
        nx.add_star(G, nlist)
        assert_nodes_equal(G, list(self.G) + nlist)

        G = self.G.copy()
        nlist = []
        nx.add_star(G, nlist)
        assert_nodes_equal(G.nodes, self.Gnodes)
        assert_edges_equal(G.edges, self.G.edges) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:25,代碼來源:test_function.py

示例12: test_info_digraph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_info_digraph(self):
        G = nx.DiGraph(name='path_graph(5)')
        nx.add_path(G, [0, 1, 2, 3, 4])
        info = nx.info(G)
        expected_graph_info = '\n'.join(['Name: path_graph(5)',
                                         'Type: DiGraph',
                                         'Number of nodes: 5',
                                         'Number of edges: 4',
                                         'Average in degree:   0.8000',
                                         'Average out degree:   0.8000'])
        assert_equal(info, expected_graph_info)

        info = nx.info(G, n=1)
        expected_node_info = '\n'.join(
            ['Node 1 has the following properties:',
             'Degree: 2',
             'Neighbors: 2'])
        assert_equal(info, expected_node_info)

        assert_raises(nx.NetworkXError, nx.info, G, n=-1) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:22,代碼來源:test_function.py

示例13: test_neighbors_complete_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_neighbors_complete_graph(self):
        graph = nx.complete_graph(100)
        pop = random.sample(list(graph), 1)
        nbors = list(nx.neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), len(graph) - 1)

        graph = nx.path_graph(100)
        node = random.sample(list(graph), 1)[0]
        nbors = list(nx.neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 2)
        else:
            assert_equal(len(nbors), 1)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.neighbors(graph, 0))
        assert_equal(len(nbors), 99) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:22,代碼來源:test_function.py

示例14: test_info

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def test_info(self):
        G = nx.path_graph(5)
        G.name = "path_graph(5)"
        info = nx.info(G)
        expected_graph_info = '\n'.join(['Name: path_graph(5)',
                                         'Type: Graph',
                                         'Number of nodes: 5',
                                         'Number of edges: 4',
                                         'Average degree:   1.6000'])
        assert_equal(info, expected_graph_info)

        info = nx.info(G, n=1)
        expected_node_info = '\n'.join(
            ['Node 1 has the following properties:',
             'Degree: 2',
             'Neighbors: 0 2'])
        assert_equal(info, expected_node_info) 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:19,代碼來源:test_function.py

示例15: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import nodes [as 別名]
def __init__(self, G, p, q, num_walks, walk_length):
        """
        :param G: NetworkX object.
        :param p: Return parameter.
        :param q: In-out parameter.
        :param num_walks: Number of walks per source.
        :param walk_length: Number of nodes in walk.
        """
        self.G = G
        self.nodes = nx.nodes(self.G)
        print("Edge weighting.\n")
        for edge in tqdm(self.G.edges()):
            self.G[edge[0]][edge[1]]['weight'] = 1.0
            self.G[edge[1]][edge[0]]['weight'] = 1.0
        self.p = p
        self.q = q
        self.num_walks = num_walks
        self.walk_length = walk_length
        self.preprocess_transition_probs()
        self.simulate_walks() 
開發者ID:benedekrozemberczki,項目名稱:role2vec,代碼行數:22,代碼來源:walkers.py


注:本文中的networkx.nodes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。