當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.neighbors方法代碼示例

本文整理匯總了Python中networkx.neighbors方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.neighbors方法的具體用法?Python networkx.neighbors怎麽用?Python networkx.neighbors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.neighbors方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: annotate_with_bfs

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def annotate_with_bfs(orig_graph, start, max_depth=20):
    graph = orig_graph.copy()
    for u in graph.nodes():
        graph.node[u]['vec'].append(1)

    visited, queue, dist = set(), [start], dict()
    dist[start] = 0
    while queue:
        vertex = queue.pop(0)
        if dist[vertex] <= max_depth:
            if vertex not in visited:
                visited.add(vertex)
                val = max_depth - dist[vertex]
                graph.node[vertex]['vec'][-1] = val
                next_nodes = [u for u in graph.neighbors(vertex)
                              if u not in visited]
                next_dist = dist[vertex] + 1
                for u in next_nodes:
                    dist[u] = next_dist
                queue.extend(next_nodes)
    return graph 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:23,代碼來源:__init__.py

示例2: compute_matching_neighborhoods_fraction

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def compute_matching_neighborhoods_fraction(GA, GB, pairings):
    count = 0
    matches = dict([(i, j) for i, j in enumerate(pairings)])
    matching_edges = defaultdict(list)
    for i, j in GA.edges():
        ii = matches[i]
        jj = matches[j]
        if (ii, jj) in GB.edges():
            matching_edges[i].append(j)
            matching_edges[j].append(i)
    for u in GA.nodes():
        if matching_edges.get(u, False):
            neighbors = nx.neighbors(GA, u)
            matches_neighborhood = True
            for v in neighbors:
                if v not in matching_edges[u]:
                    matches_neighborhood = False
                    break
            if matches_neighborhood:
                count += 1
    return float(count) / len(GA.nodes()) 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:23,代碼來源:__init__.py

示例3: _make_a_pick

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def _make_a_pick(self, neighbors):
        """
        Choosing a neighbor from a propagation source node.

        Arg types:
            * **neigbours** *(list)* - Neighbouring nodes.
        """
        scores = {}
        for neighbor in neighbors:
            neighbor_label = self._labels[neighbor]
            if neighbor_label in scores.keys():
                scores[neighbor_label] = scores[neighbor_label] + 1
            else:
                scores[neighbor_label] = 1
        top = [key for key, val in scores.items() if val == max(scores.values())]
        return random.sample(top, 1)[0] 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:18,代碼來源:label_propagation.py

示例4: make_step

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def make_step(self, node, graph, features, labels, inverse_labels):
        """
        :param node: Source node for step.
        :param graph: NetworkX graph.
        :param features: Feature matrix.
        :param labels: Node labels hash table.
        :param inverse_labels: Inverse node label hash table.
        """
        orig_neighbors = set(nx.neighbors(graph, node))
        label = self.sample_node_label(orig_neighbors, graph, features)
        labels = list(set(orig_neighbors).intersection(set(inverse_labels[str(label)])))
        new_node = random.choice(labels)
        new_node_attributes = torch.zeros((len(self.identifiers), 1))
        new_node_attributes[label, 0] = 1.0
        attention_score = self.attention[label]
        return new_node_attributes, new_node, attention_score 
開發者ID:benedekrozemberczki,項目名稱:GAM,代碼行數:18,代碼來源:gam.py

示例5: node2vec_walk

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def node2vec_walk(self, walk_length, start_node):
        """
        Simulate a random walk starting from start node.
        """
        G = self.G
        alias_nodes = self.alias_nodes
        alias_edges = self.alias_edges

        walk = [start_node]

        while len(walk) < walk_length:
            cur = walk[-1]
            cur_nbrs = sorted(G.neighbors(cur))
            if len(cur_nbrs) > 0:
                if len(walk) == 1:
                    walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])])
                else:
                    prev = walk[-2]
                    next = cur_nbrs[alias_draw(alias_edges[(prev, cur)][0], alias_edges[(prev, cur)][1])]
                    walk.append(next)
            else:
                break

        return walk 
開發者ID:benedekrozemberczki,項目名稱:GEMSEC,代碼行數:26,代碼來源:calculation_helper.py

示例6: nodes_in_neighborhood_of_nodes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def nodes_in_neighborhood_of_nodes(self, nodes, blacklist_nodes, nnodes=100):
        """
        Takes a list of nodes and finds the neighbors with most connections to the nodes.

        :param nodes: list
        :param blacklist_nodes: list of node_pub_keys to be excluded from counting
        :param nnodes: int, limit for the number of nodes returned
        :return: list of tuples, (str pub_key, int number of neighbors)
        """
        nodes = set(nodes)
        # eliminate blacklisted nodes
        nodes = nodes.difference(blacklist_nodes)
        neighboring_nodes = []
        for general_node in self.graph.nodes:
            neighbors_general_node = set(self.neighbors(general_node))
            intersection_with_nodes = nodes.intersection(neighbors_general_node)
            number_of_connection_with_nodes = len(intersection_with_nodes)
            neighboring_nodes.append((general_node, number_of_connection_with_nodes))

        sorted_neighboring_nodes = sorted(neighboring_nodes, key=lambda x: x[1], reverse=True)
        return sorted_neighboring_nodes[:nnodes] 
開發者ID:bitromortac,項目名稱:lndmanage,代碼行數:23,代碼來源:network.py

示例7: test_neighbors

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def test_neighbors(self):
        graph = nx.complete_graph(100)
        pop = random.sample(graph.nodes(), 1)
        nbors = list(nx.neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), len(graph) - 1)

        graph = nx.path_graph(100)
        node = random.sample(graph.nodes(), 1)[0]
        nbors = list(nx.neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 2)
        else:
            assert_equal(len(nbors), 1)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.neighbors(graph, 0))
        assert_equal(len(nbors), 99) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:22,代碼來源:test_function.py

示例8: test_neighbors_complete_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def test_neighbors_complete_graph(self):
        graph = nx.complete_graph(100)
        pop = random.sample(list(graph), 1)
        nbors = list(nx.neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), len(graph) - 1)

        graph = nx.path_graph(100)
        node = random.sample(list(graph), 1)[0]
        nbors = list(nx.neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 2)
        else:
            assert_equal(len(nbors), 1)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.neighbors(graph, 0))
        assert_equal(len(nbors), 99) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:22,代碼來源:test_function.py

示例9: test_neighbors

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def test_neighbors(self):
        graph = nx.complete_graph(100)
        pop = random.sample(list(graph), 1)
        nbors = list(nx.neighbors(graph, pop[0]))
        # should be all the other vertices in the graph
        assert_equal(len(nbors), len(graph) - 1)

        graph = nx.path_graph(100)
        node = random.sample(list(graph), 1)[0]
        nbors = list(nx.neighbors(graph, node))
        # should be all the other vertices in the graph
        if node != 0 and node != 99:
            assert_equal(len(nbors), 2)
        else:
            assert_equal(len(nbors), 1)

        # create a star graph with 99 outer nodes
        graph = nx.star_graph(99)
        nbors = list(nx.neighbors(graph, 0))
        assert_equal(len(nbors), 99) 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:22,代碼來源:test_function.py

示例10: node2vec_walk

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def node2vec_walk(self, start_node):
        """
        Simulate a random walk starting from start node.
        """
        G = self.G
        alias_nodes = self.alias_nodes
        alias_edges = self.alias_edges

        walk = [start_node]

        while len(walk) < self.walk_length:
            cur = walk[-1]
            cur_nbrs = sorted(G.neighbors(cur))
            if len(cur_nbrs) > 0:
                if len(walk) == 1:
                    walk.append(cur_nbrs[alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])])
                else:
                    prev = walk[-2]
                    next = cur_nbrs[alias_draw(alias_edges[(prev, cur)][0], alias_edges[(prev, cur)][1])]
                    walk.append(next)
            else:
                break
        walk = [str(node) for node in walk]
        return walk 
開發者ID:benedekrozemberczki,項目名稱:role2vec,代碼行數:26,代碼來源:walkers.py

示例11: get_alias_edge

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def get_alias_edge(self, src, dst):
        """
        Get the alias edge setup lists for a given edge.
        """
        G = self.G
        p = self.p
        q = self.q

        unnormalized_probs = []
        for dst_nbr in sorted(G.neighbors(dst)):
            if dst_nbr == src:
                unnormalized_probs.append(G[dst][dst_nbr]['weight']/p)
            elif G.has_edge(dst_nbr, src):
                unnormalized_probs.append(G[dst][dst_nbr]['weight'])
            else:
                unnormalized_probs.append(G[dst][dst_nbr]['weight']/q)
        norm_const = sum(unnormalized_probs)
        normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]

        return alias_setup(normalized_probs) 
開發者ID:benedekrozemberczki,項目名稱:role2vec,代碼行數:22,代碼來源:walkers.py

示例12: preprocess_transition_probs

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def preprocess_transition_probs(self):
        """
        Preprocessing of transition probabilities for guiding the random walks.
        """
        G = self.G

        alias_nodes = {}
        print("")
        print("Preprocesing.\n")
        for node in tqdm(G.nodes()):
            unnormalized_probs = [G[node][nbr]['weight'] for nbr in sorted(G.neighbors(node))]
            norm_const = sum(unnormalized_probs)
            normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
            alias_nodes[node] = alias_setup(normalized_probs)

        alias_edges = {}
        triads = {}

        for edge in tqdm(G.edges()):
            alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
            alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0])

        self.alias_nodes = alias_nodes
        self.alias_edges = alias_edges 
開發者ID:benedekrozemberczki,項目名稱:role2vec,代碼行數:26,代碼來源:walkers.py

示例13: _do_a_propagation

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def _do_a_propagation(self):
        """
        Doing a propagation round.
        """
        random.shuffle(self._nodes)
        new_labels = {}
        for node in self._nodes:
            neighbors = [neb for neb in nx.neighbors(self._graph, node)]
            pick = self._make_a_pick(neighbors)
            new_labels[node] = pick
        self._labels = new_labels 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:13,代碼來源:label_propagation.py

示例14: do_walk

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def do_walk(self, node):
        """
        Doing a single truncated random walk from a source node.
        :param node: Source node of the truncated random walk.
        :return walk: A single random walk.
        """
        walk = [node]
        while len(walk) < self.args.walk_length:
            nebs = [n for n in nx.neighbors(self.graph, walk[-1])]
            if len(nebs) == 0:
                break
            walk.append(random.choice(nebs))
        return walk 
開發者ID:benedekrozemberczki,項目名稱:Splitter,代碼行數:15,代碼來源:walkers.py

示例15: small_walk

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import neighbors [as 別名]
def small_walk(self, start_node):
        """
        Doing a truncated random walk.
        :param start_node: Start node for random walk.
        :return walk: Truncated random walk with fixed maximal length.
        """
        walk = [start_node]
        while len(walk) < self.length:
            nebs = [n for n in nx.neighbors(self.graph, walk[-1])]
            if len(nebs) == 0:
                break
            walk.append(random.choice(nebs))
        return walk 
開發者ID:benedekrozemberczki,項目名稱:SINE,代碼行數:15,代碼來源:walkers.py


注:本文中的networkx.neighbors方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。