本文整理匯總了Python中networkx.max_weight_matching方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.max_weight_matching方法的具體用法?Python networkx.max_weight_matching怎麽用?Python networkx.max_weight_matching使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.max_weight_matching方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: mwgm_networkx
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def mwgm_networkx(pairs, sim_mat):
def str_splice(prefix, index):
return prefix + "_" + str(index)
def remove_prefix(string):
params = string.split('_')
assert len(params) == 2
return int(params[-1])
prefix1 = 's'
prefix2 = 't'
graph = nx.Graph()
for pair in pairs:
graph.add_edge(str_splice(prefix1, pair[0]), str_splice(prefix2, pair[1]), weight=sim_mat[pair[0], pair[1]])
edges = nx.max_weight_matching(graph, maxcardinality=False)
matching_pairs = set()
for v1, v2 in edges:
if v1.startswith(prefix1):
s = remove_prefix(v1)
t = remove_prefix(v2)
else:
t = remove_prefix(v1)
s = remove_prefix(v2)
matching_pairs.add((s, t))
return matching_pairs
示例2: match_objects_uniquely
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def match_objects_uniquely(candidates, targets, threshold=0.5):
g = nx.Graph()
for t in targets:
g.add_node(t)
for c in candidates:
g.add_node(c)
for t in targets:
tbb = BBox(*t.bbox)
for c in candidates:
cbb = BBox(*c.bbox)
intersection = tbb.intersection(cbb).area
union = tbb.area + cbb.area - intersection
try:
current_iou = intersection / float(union)
except ZeroDivisionError:
current_iou = float('inf')
pass
if current_iou >= threshold:
g.add_edge(t, c, weight=current_iou)
target_set = set(targets)
matching = nx.max_weight_matching(g, maxcardinality=True) # <- a dict with v->c and c->v both
hits = [(t, c) for (t, c) in matching.items() if t in target_set]
return hits
示例3: DSP_Matching
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def DSP_Matching(Syndrome, External, dim, alt_ext):
# Fully connect check operators
for check1 in Syndrome.nodes():
for check2 in Syndrome.nodes():
if check1 != check2:
weight = - common.euclidean_dist(check1, check2) +.1
Syndrome.add_edge(*(check1, check2), weight=weight)
# Generate Boundary Graph
External_Graph = nx.Graph()
for m in Syndrome.nodes():
ext = DSP_AssociatedExternal(m, External)
External_Graph.add_node(ext)
weight = - common.euclidean_dist(m, ext)
Syndrome.add_edge(*(m, ext), weight=weight)
# Ensure even number of elements in Syndrome
# so min weight matching can proceed successfully
if len(Syndrome.nodes()) % 2 != 0:
Syndrome.add_node(alt_ext)
External_Graph.add_node(alt_ext)
# Connect External Nodes
edges = itertools.combinations(External_Graph,2)
Syndrome.add_edges_from(edges, weight = 0)
TempMatching = nx.max_weight_matching(Syndrome, maxcardinality=True)
Matching = {}
# each edge appears twice in TempMatching
# Should only appear once in Matching
for node, neighbor in TempMatching.items():
if neighbor not in Matching and node not in Matching:
if node not in External or neighbor not in External:
if node != alt_ext and neighbor != alt_ext:
Matching[node] = neighbor
return Matching
示例4: construct_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def construct_graph(user_ids, disallowed_meetings):
"""
We can use a maximum matching algorithm for this:
https://en.wikipedia.org/wiki/Blossom_algorithm
Yay graphs! Networkx will do all the work for us.
"""
# special weights that be put on the matching potential of each meeting,
# depending on heuristics for what makes a good/bad potential meeting.
meeting_to_weight = {}
# This creates the graph and the maximal matching set is returned.
# It does not return anyone who didn't get matched.
meetings = []
possible_meetings = {
meeting for meeting in itertools.combinations(user_ids, 2)
}
allowed_meetings = possible_meetings - disallowed_meetings
for meeting in allowed_meetings:
weight = meeting_to_weight.get(meeting, 1.0)
meetings.append(meeting + ({'weight': weight},))
graph = nx.Graph()
graph.add_nodes_from(user_ids)
graph.add_edges_from(meetings)
return nx.max_weight_matching(graph)
示例5: get_UA_pairs
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def get_UA_pairs(UA, AC, use_graph=True):
"""
"""
bonds = get_bonds(UA, AC)
if len(bonds) == 0:
return [()]
if use_graph:
G = nx.Graph()
G.add_edges_from(bonds)
UA_pairs = [list(nx.max_weight_matching(G))]
return UA_pairs
max_atoms_in_combo = 0
UA_pairs = [()]
for combo in list(itertools.combinations(bonds, int(len(UA) / 2))):
flat_list = [item for sublist in combo for item in sublist]
atoms_in_combo = len(set(flat_list))
if atoms_in_combo > max_atoms_in_combo:
max_atoms_in_combo = atoms_in_combo
UA_pairs = [combo]
elif atoms_in_combo == max_atoms_in_combo:
UA_pairs.append(combo)
return UA_pairs
示例6: optimal_permutation
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def optimal_permutation(frompts, topts, allow_reflection=False,
distance_metric='euclidean'):
# compute distances of points
D = cdist(frompts, topts, distance_metric)
if allow_reflection:
Dreflection = cdist(frompts, -1 * topts)
reflection_sign = np.where(Dreflection < D, -1, 1)
D = np.minimum(Dreflection, D)
else:
reflection_sign = np.ones(frompts.shape[0])
Dmax = D.max()
# construct bipartite graph
import networkx as nx
graph = nx.Graph()
for i in xrange(frompts.shape[0]):
graph.add_node("A%d" % i)
graph.add_node("B%d" % i)
for i in xrange(frompts.shape[0]):
for j in xrange(frompts.shape[0]):
w = Dmax - D[i, j]
graph.add_edge("A%d" % i, "B%d" % j, {'weight': w})
# compute max matching of graph
mates = nx.max_weight_matching(graph, True)
# fill permutation matrix according to matching result
R = np.zeros((frompts.shape[0], topts.shape[0]))
for k, v in mates.iteritems():
if k.startswith('A'):
i, j = int(k[1:]), int(v[1:])
R[i, j] = reflection_sign[i, j] if allow_reflection else 1
R = R.T # mapping frompts-topts
return R
示例7: test_trivial1
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_trivial1(self):
"""Empty graph"""
G = nx.Graph()
assert_equal(nx.max_weight_matching(G),{})
示例8: test_trivial2
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_trivial2(self):
"""Self loop"""
G = nx.Graph()
G.add_edge(0, 0, weight=100)
assert_equal(nx.max_weight_matching(G),{})
示例9: test_trivial3
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_trivial3(self):
"""Single edge"""
G = nx.Graph()
G.add_edge(0, 1)
assert_equal(nx.max_weight_matching(G),
{0: 1, 1: 0})
示例10: test_trivial4
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_trivial4(self):
"""Small graph"""
G = nx.Graph()
G.add_edge('one', 'two', weight=10)
G.add_edge('two', 'three', weight=11)
assert_equal(nx.max_weight_matching(G),
{'three': 'two', 'two': 'three'})
示例11: test_trivial5
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_trivial5(self):
"""Path"""
G = nx.Graph()
G.add_edge(1, 2, weight=5)
G.add_edge(2, 3, weight=11)
G.add_edge(3, 4, weight=5)
assert_equal(nx.max_weight_matching(G),
{2: 3, 3: 2})
assert_equal(nx.max_weight_matching(G, 1),
{1: 2, 2: 1, 3: 4, 4: 3})
示例12: test_negative_weights
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_negative_weights(self):
"""Negative weights"""
G = nx.Graph()
G.add_edge(1, 2, weight=2)
G.add_edge(1, 3, weight=-2)
G.add_edge(2, 3, weight=1)
G.add_edge(2, 4, weight=-1)
G.add_edge(3, 4, weight=-6)
assert_equal(nx.max_weight_matching(G),
{1: 2, 2: 1})
assert_equal(nx.max_weight_matching(G, 1),
{1: 3, 2: 4, 3: 1, 4: 2})
示例13: test_s_blossom
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_s_blossom(self):
"""Create S-blossom and use it for augmentation:"""
G = nx.Graph()
G.add_weighted_edges_from([ (1, 2, 8), (1, 3, 9),
(2, 3, 10), (3, 4, 7) ])
assert_equal(nx.max_weight_matching(G),
{1: 2, 2: 1, 3: 4, 4: 3})
G.add_weighted_edges_from([ (1, 6, 5), (4, 5, 6) ])
assert_equal(nx.max_weight_matching(G),
{1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
示例14: test_s_t_blossom
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_s_t_blossom(self):
"""Create S-blossom, relabel as T-blossom, use for augmentation:"""
G = nx.Graph()
G.add_weighted_edges_from([ (1, 2, 9), (1, 3, 8), (2, 3, 10),
(1, 4, 5), (4, 5, 4), (1, 6, 3) ])
assert_equal(nx.max_weight_matching(G),
{1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
G.add_edge(4, 5, weight=3)
G.add_edge(1, 6, weight=4)
assert_equal(nx.max_weight_matching(G),
{1: 6, 2: 3, 3: 2, 4: 5, 5: 4, 6: 1})
G.remove_edge(1, 6)
G.add_edge(3, 6, weight=4)
assert_equal(nx.max_weight_matching(G),
{1: 2, 2: 1, 3: 6, 4: 5, 5: 4, 6: 3})
示例15: test_nested_s_blossom
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import max_weight_matching [as 別名]
def test_nested_s_blossom(self):
"""Create nested S-blossom, use for augmentation:"""
G = nx.Graph()
G.add_weighted_edges_from([ (1, 2, 9), (1, 3, 9), (2, 3, 10),
(2, 4, 8), (3, 5, 8), (4, 5, 10),
(5, 6, 6) ])
assert_equal(nx.max_weight_matching(G),
{1: 3, 2: 4, 3: 1, 4: 2, 5: 6, 6: 5})