本文整理匯總了Python中networkx.lollipop_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.lollipop_graph方法的具體用法?Python networkx.lollipop_graph怎麽用?Python networkx.lollipop_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.lollipop_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_correct_resize
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_correct_resize(self):
"""Test if function correctly resizes on a fixed example where the ideal resizing is
known. The example is a lollipop graph of 6 fully connected nodes and 2 nodes on the
lollipop stick. An edge between node zero and node ``dim - 1`` (the lollipop node
connecting to the stick) is removed and a starting subgraph of nodes ``[2, 3, 4, 5,
6]`` is selected. The objective is to add-on 1 and 2 nodes and remove 1 node."""
dim = 6
g = nx.lollipop_graph(dim, 2)
g.remove_edge(0, dim - 1)
s = [2, 3, 4, 5, 6]
min_size = 4
max_size = 7
ideal = {
4: [2, 3, 4, 5],
5: [2, 3, 4, 5, 6],
6: [1, 2, 3, 4, 5, 6],
7: [0, 1, 2, 3, 4, 5, 6],
}
resized = subgraph.resize(s, g, min_size, max_size)
assert ideal == resized
示例2: test_swap_degree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_swap_degree(self, dim):
"""Test if function performs correct swap operation when degree-based node selection is
used. Input graph is a lollipop graph, consisting of a fully connected graph with a
single additional node connected to just one of the nodes in the graph. Additionally,
a connection between node ``0`` and ``dim - 1`` is removed as well as a connection
between node ``0`` and ``dim - 2``. A clique of the first ``dim - 2`` nodes is then
input. In this case, C1 consists of nodes ``dim - 1`` and ``dim - 2``. However,
node ``dim - 1`` has greater degree due to the extra node in the lollipop graph. This
test confirms that the resultant swap is performed correctly."""
graph = nx.lollipop_graph(dim, 1)
graph.remove_edge(0, dim - 1)
graph.remove_edge(0, dim - 2)
s = list(range(dim - 2))
result = set(clique.swap(s, graph, node_select="degree"))
expected = set(range(1, dim - 2)) | {dim - 1}
assert result == expected
示例3: _gen_lollipop
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def _gen_lollipop(self, n):
for _ in range(n):
num_v = np.random.randint(self.min_num_v, self.max_num_v)
path_len = np.random.randint(2, num_v // 2)
g = nx.lollipop_graph(m=num_v - path_len, n=path_len)
self.graphs.append(g)
self.labels.append(3)
示例4: test_expected_growth
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_expected_growth(self):
"""Test if function performs a growth and swap phase, followed by another growth and
attempted swap phase. This is carried out by starting with a 4+1 node lollipop graph,
adding a connection from node 4 to node 2 and starting with the [3, 4] clique. The local
search algorithm should first grow to [2, 3, 4] and then swap to either [0, 2, 3] or [1,
2, 3], and then grow again to [0, 1, 2, 3] and being unable to swap, hence returning [0,
1, 2, 3]"""
graph = nx.lollipop_graph(4, 1)
graph.add_edge(4, 2)
c = [3, 4]
result = clique.search(c, graph, iterations=100)
assert result == [0, 1, 2, 3]
示例5: test_grow_maximal_degree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_grow_maximal_degree(self, dim):
"""Test if function grows to expected maximal graph when degree-based node selection is
used. The chosen graph is a fully connected graph with only the final node being
connected to an additional node. Furthermore, the ``dim - 2`` node is disconnected from
the ``dim - 1`` node. Starting from the first ``dim - 3`` nodes, one can either add in
the ``dim - 2`` node or the ``dim - 1`` node. The ``dim - 1`` node has a higher degree
due to the lollipop graph structure, and hence should be selected."""
graph = nx.lollipop_graph(dim, 1)
graph.remove_edge(dim - 2, dim - 1)
s = set(range(dim - 2))
target = s | {dim - 1}
assert set(clique.grow(s, graph, node_select="degree")) == target
示例6: test_is_output_clique
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_is_output_clique(self, dim):
"""Test that the output subgraph is a valid clique, in this case the maximum clique
in a lollipop graph"""
graph = nx.lollipop_graph(dim, dim)
subgraph = list(range(2 * dim)) # subgraph is the entire graph
resized = clique.shrink(subgraph, graph)
assert clique.is_clique(graph.subgraph(resized))
assert resized == list(range(dim))
示例7: test_correct_c_0
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_correct_c_0(self, dim):
"""Tests that :math:`c_0` is generated correctly for the lollipop graph"""
g = nx.lollipop_graph(dim, 1)
s = set(range(int(dim / 2)))
res = set(clique.c_0(s, g))
assert res not in s
assert {dim + 1} not in res
assert res | s == set(range(dim))
示例8: random_layout
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def random_layout(G, dim=2, scale=1., center=None):
"""Position nodes uniformly at random.
For every node, a position is generated by choosing each of dim
coordinates uniformly at random on the default interval [0.0, 1.0),
or on an interval of length `scale` centered at `center`.
NumPy (http://scipy.org) is required for this function.
Parameters
----------
G : NetworkX graph or list of nodes
A position will be assigned to every node in G.
dim : int
Dimension of layout.
scale : float (default 1)
Scale factor for positions
center : array-like (default scale*0.5 in each dim)
Coordinate around which to center the layout.
Returns
-------
pos : dict
A dictionary of positions keyed by node
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)
"""
import numpy as np
shape = (len(G), dim)
pos = np.random.random(shape) * scale
if center is not None:
pos += np.asarray(center) - 0.5 * scale
return dict(zip(G, pos))
示例9: setUp
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def setUp(self):
G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted")
G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted")
G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted")
self.G = nx.union(G1, G2)
self.G = nx.union(self.G, G3)
self.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
self.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1)
self.gc = []
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 3), (2, 8), (3, 4), (3, 7), (4, 5),
(5, 3), (5, 6), (7, 4), (7, 6), (8, 1), (8, 7)])
C = [[3, 4, 5, 7], [1, 2, 8], [6]]
self.gc.append((G, C))
G = nx.DiGraph()
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
C = [[2, 3, 4],[1]]
self.gc.append((G, C))
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
C = [[1, 2, 3]]
self.gc.append((G,C))
# Eppstein's tests
G = nx.DiGraph({0:[1], 1:[2, 3], 2:[4, 5], 3:[4, 5], 4:[6], 5:[], 6:[]})
C = [[0], [1], [2],[ 3], [4], [5], [6]]
self.gc.append((G,C))
G = nx.DiGraph({0:[1], 1:[2, 3, 4], 2:[0, 3], 3:[4], 4:[3]})
C = [[0, 1, 2], [3, 4]]
self.gc.append((G, C))
示例10: __init__
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def __init__(self):
# G1 is a disconnected graph
self.G1 = nx.Graph()
self.G1.add_nodes_from([1, 2, 3])
# G2 is a cycle graph
self.G2 = nx.cycle_graph(4)
# G3 is the triangle graph with one additional edge
self.G3 = nx.lollipop_graph(3, 1)
示例11: test_maximal_by_cardinality
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def test_maximal_by_cardinality(self):
"""Tests that the maximal clique is computed according to maximum
cardinality of the sets.
For more information, see pull request #1531.
"""
G = nx.complete_graph(5)
G.add_edge(4, 5)
clique = max_clique(G)
assert_greater(len(clique), 1)
G = nx.lollipop_graph(30, 2)
clique = max_clique(G)
assert_greater(len(clique), 2)
示例12: setUp
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def setUp(self):
G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted")
G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted")
G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted")
self.G = nx.union(G1, G2)
self.G = nx.union(self.G, G3)
self.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
self.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1)
self.gc = []
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 3), (2, 8), (3, 4), (3, 7), (4, 5),
(5, 3), (5, 6), (7, 4), (7, 6), (8, 1), (8, 7)])
C = [[3, 4, 5, 7], [1, 2, 8], [6]]
self.gc.append((G, C))
G = nx.DiGraph()
G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
C = [[2, 3, 4], [1]]
self.gc.append((G, C))
G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
C = [[1, 2, 3]]
self.gc.append((G, C))
# Eppstein's tests
G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
C = [[0], [1], [2], [3], [4], [5], [6]]
self.gc.append((G, C))
G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
C = [[0, 1, 2], [3, 4]]
self.gc.append((G, C))
G = nx.DiGraph()
C = []
self.gc.append((G, C))
示例13: random_layout
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def random_layout(G, center=None, dim=2):
"""Position nodes uniformly at random in the unit square.
For every node, a position is generated by choosing each of dim
coordinates uniformly at random on the interval [0.0, 1.0).
NumPy (http://scipy.org) is required for this function.
Parameters
----------
G : NetworkX graph or list of nodes
A position will be assigned to every node in G.
center : array-like or None
Coordinate pair around which to center the layout.
dim : int
Dimension of layout.
Returns
-------
pos : dict
A dictionary of positions keyed by node
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)
"""
import numpy as np
G, center = _process_params(G, center, dim)
shape = (len(G), dim)
pos = np.random.random(shape) + center
pos = pos.astype(np.float32)
pos = dict(zip(G, pos))
return pos
示例14: generate_adjlist
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def generate_adjlist(G, delimiter = ' '):
"""Generate a single line of the graph G in adjacency list format.
Parameters
----------
G : NetworkX graph
delimiter : string, optional
Separator for node labels
Returns
-------
lines : string
Lines of data in adjlist format.
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_adjlist(G):
... print(line)
0 1 2 3
1 2 3
2 3
3 4
4 5
5 6
6
See Also
--------
write_adjlist, read_adjlist
"""
directed=G.is_directed()
seen=set()
for s,nbrs in G.adjacency_iter():
line = make_str(s)+delimiter
for t,data in nbrs.items():
if not directed and t in seen:
continue
if G.is_multigraph():
for d in data.values():
line += make_str(t) + delimiter
else:
line += make_str(t) + delimiter
if not directed:
seen.add(s)
yield line[:-len(delimiter)]
示例15: generate_adjlist
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import lollipop_graph [as 別名]
def generate_adjlist(G, delimiter=' '):
"""Generate a single line of the graph G in adjacency list format.
Parameters
----------
G : NetworkX graph
delimiter : string, optional
Separator for node labels
Returns
-------
lines : string
Lines of data in adjlist format.
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_adjlist(G):
... print(line)
0 1 2 3
1 2 3
2 3
3 4
4 5
5 6
6
See Also
--------
write_adjlist, read_adjlist
"""
directed = G.is_directed()
seen = set()
for s, nbrs in G.adjacency():
line = make_str(s) + delimiter
for t, data in nbrs.items():
if not directed and t in seen:
continue
if G.is_multigraph():
for d in data.values():
line += make_str(t) + delimiter
else:
line += make_str(t) + delimiter
if not directed:
seen.add(s)
yield line[:-len(delimiter)]