當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.karate_club_graph方法代碼示例

本文整理匯總了Python中networkx.karate_club_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.karate_club_graph方法的具體用法?Python networkx.karate_club_graph怎麽用?Python networkx.karate_club_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.karate_club_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_identity_embedding

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_identity_embedding(self):
        """a 1-to-1 embedding should not change the adjacency"""
        target_adj = nx.karate_club_graph()

        embedding = {v: {v} for v in target_adj}

        source_adj = dwave.embedding.target_to_source(target_adj, embedding)

        # test the adjacencies are equal (source_adj is a dict and target_adj is a networkx graph)
        for v in target_adj:
            self.assertIn(v, source_adj)
            for u in target_adj[v]:
                self.assertIn(u, source_adj[v])

        for v in source_adj:
            self.assertIn(v, target_adj)
            for u in source_adj[v]:
                self.assertIn(u, target_adj[v]) 
開發者ID:dwavesystems,項目名稱:dwave-system,代碼行數:20,代碼來源:test_embedding_utils.py

示例2: test_node_attribute

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_node_attribute(self):

        g = nx.karate_club_graph()
        attr = {n: {"even": int(n % 2)} for n in g.nodes()}
        nx.set_node_attributes(g, attr)

        model = gc.CompositeModel(g)
        model.add_status("Susceptible")
        model.add_status("Infected")

        c = cpm.NodeCategoricalAttribute("even", "0", probability=0.6)
        model.add_rule("Susceptible", "Infected", c)

        config = mc.Configuration()
        config.add_model_parameter('fraction_infected', 0.1)

        model.set_initial_status(config)
        iterations = model.iteration_bunch(10)
        self.assertEqual(len(iterations), 10) 
開發者ID:GiulioRossetti,項目名稱:ndlib,代碼行數:21,代碼來源:test_compartment.py

示例3: test_edge_attribute

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_edge_attribute(self):

        g = nx.karate_club_graph()
        attr = {(u, v): {"even": int((u+v) % 2)} for (u, v) in g.edges()}
        nx.set_edge_attributes(g, attr)

        model = gc.CompositeModel(g)
        model.add_status("Susceptible")
        model.add_status("Infected")

        c = cpm.EdgeCategoricalAttribute("even", "0", probability=0.6)
        model.add_rule("Susceptible", "Infected", c)

        config = mc.Configuration()
        config.add_model_parameter('fraction_infected', 0.1)

        model.set_initial_status(config)
        iterations = model.iteration_bunch(10)
        self.assertEqual(len(iterations), 10) 
開發者ID:GiulioRossetti,項目名稱:ndlib,代碼行數:21,代碼來源:test_compartment.py

示例4: test_countwodn

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_countwodn(self):

        g = nx.karate_club_graph()

        model = gc.CompositeModel(g)
        model.add_status("Susceptible")
        model.add_status("Infected")

        c = cpm.CountDown(name="time", iterations=4)
        model.add_rule("Susceptible", "Infected", c)

        config = mc.Configuration()
        config.add_model_parameter('fraction_infected', 0.1)

        model.set_initial_status(config)
        iterations = model.iteration_bunch(100)
        self.assertEqual(len(iterations), 100) 
開發者ID:GiulioRossetti,項目名稱:ndlib,代碼行數:19,代碼來源:test_compartment.py

示例5: test_demon_lib

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_demon_lib(self):
        g = nx.karate_club_graph()
        nx.write_edgelist(g, "test.csv", delimiter=" ")

        D = d.Demon(network_filename="test.csv", epsilon=0.3)
        coms = D.execute()
        print(coms)

        self.assertEqual(len(coms), 2)

        D = d.Demon(graph=g, file_output="communities.txt", epsilon=0.3)
        D.execute()

        f = open("communities.txt")
        count = 0
        for _ in f:
            count += 1
        self.assertEqual(count, 2)

        os.remove("test.csv")
        os.remove("communities.txt") 
開發者ID:GiulioRossetti,項目名稱:DEMON,代碼行數:23,代碼來源:demon_test.py

示例6: test_quantum_jsd

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_quantum_jsd():
    """Run the above tests again using the collision entropy instead of the
    Von Neumann entropy to ensure that all the logic of the JSD implementation
    is tested.
    """

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", message="JSD is only a metric for 0 ≤ q < 2.")
        JSD = distance.QuantumJSD()
        G = nx.karate_club_graph()
        dist = JSD.dist(G, G, beta=0.1, q=2)
        assert np.isclose(dist, 0.0)

        G1 = nx.fast_gnp_random_graph(100, 0.3)
        G2 = nx.barabasi_albert_graph(100, 5)
        dist = JSD.dist(G1, G2, beta=0.1, q=2)
        assert dist > 0.0

        G1 = nx.barabasi_albert_graph(100, 4)
        G2 = nx.fast_gnp_random_graph(100, 0.3)
        dist1 = JSD.dist(G1, G2, beta=0.1, q=2)
        dist2 = JSD.dist(G2, G1, beta=0.1, q=2)
        assert np.isclose(dist1, dist2) 
開發者ID:netsiphd,項目名稱:netrd,代碼行數:25,代碼來源:test_distance.py

示例7: test_weighted_input

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def test_weighted_input():
    G1 = nx.karate_club_graph()
    G2 = nx.karate_club_graph()
    rand = np.random.RandomState(seed=42)
    edge_weights = {e: rand.randint(0, 1000) for e in G2.edges}
    nx.set_edge_attributes(G2, edge_weights, "weight")
    assert nx.is_isomorphic(G1, G2)

    for label, obj in distance.__dict__.items():
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            if isinstance(obj, type) and BaseDistance in obj.__bases__:
                dist = obj().dist(G1, G2)
                warning_triggered = False
                for warning in w:
                    if "weighted" in str(warning.message):
                        warning_triggered = True
                if not warning_triggered:
                    assert not np.isclose(dist, 0.0)
                else:
                    assert np.isclose(dist, 0.0) 
開發者ID:netsiphd,項目名稱:netrd,代碼行數:23,代碼來源:test_distance.py

示例8: size

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def size(graph, communities, **kwargs):
    """Size is the number of nodes in the community

    :param graph: a networkx/igraph object
    :param communities: NodeClustering object
    :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
    :return: If **summary==True** a FitnessResult object, otherwise a list of floats.

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> sz = evaluation.size(g,communities)
    """

    return __quality_indexes(graph, communities, lambda g, com: len(com), **kwargs) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:20,代碼來源:fitness.py

示例9: scaled_density

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def scaled_density(graph, communities, **kwargs):
    """Scaled density.

    The scaled density of a community is defined as the ratio of the community density w.r.t. the complete graph density.

    :param graph: a networkx/igraph object
    :param communities: NodeClustering object
    :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
    :return: If **summary==True** a FitnessResult object, otherwise a list of floats.

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> scd = evaluation.scaled_density(g,communities)
    """

    return __quality_indexes(graph, communities,
                             lambda graph, coms: nx.density(nx.subgraph(graph, coms)) / nx.density(graph), **kwargs) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:23,代碼來源:fitness.py

示例10: avg_distance

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def avg_distance(graph, communities, **kwargs):
    """Average distance.

    The average distance of a community is defined average path length across all possible pair of nodes composing it.

    :param graph: a networkx/igraph object
    :param communities: NodeClustering object
    :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
    :return: If **summary==True** a FitnessResult object, otherwise a list of floats.

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> scd = evaluation.avg_distance(g,communities)
    """

    return __quality_indexes(graph, communities,
                             lambda graph, coms: nx.average_shortest_path_length(nx.subgraph(graph, coms)), **kwargs) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:23,代碼來源:fitness.py

示例11: hub_dominance

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def hub_dominance(graph, communities, **kwargs):
    """Hub dominance.

    The hub dominance of a community is defined as the ratio of the degree of its most connected node w.r.t. the theoretically maximal degree within the community.

    :param graph: a networkx/igraph object
    :param communities: NodeClustering object
    :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
    :return: If **summary==True** a FitnessResult object, otherwise a list of floats.

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> scd = evaluation.hub_dominance(g,communities)
    """

    return __quality_indexes(graph, communities,
                             lambda graph, coms: max([x[1] for x in
                                                      list(nx.degree(nx.subgraph(graph, coms)))]) / (len(coms) - 1),
                             **kwargs) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:25,代碼來源:fitness.py

示例12: avg_transitivity

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def avg_transitivity(graph, communities, **kwargs):
    """Average transitivity.

    The average transitivity of a community is defined the as the average clustering coefficient of its nodes w.r.t. their connection within the community itself.

    :param graph: a networkx/igraph object
    :param communities: NodeClustering object
    :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
    :return: If **summary==True** a FitnessResult object, otherwise a list of floats.

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> scd = evaluation.avg_transitivity(g,communities)
    """

    return __quality_indexes(graph, communities,
                             lambda graph, coms: nx.average_clustering(nx.subgraph(graph, coms)),
                             **kwargs) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:24,代碼來源:fitness.py

示例13: edges_inside

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def edges_inside(graph, community, **kwargs):
    """Number of edges internal to the community.

    :param graph: a networkx/igraph object
    :param community: NodeClustering object
    :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-community ones. Default **True**.
    :return: If **summary==True** a FitnessResult object, otherwise a list of floats.

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> mod = evaluation.edges_inside(g,communities)

    :References:

    1. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658-2663.
    """

    return __quality_indexes(graph, community, pq.PartitionQuality.edges_inside, **kwargs) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:24,代碼來源:fitness.py

示例14: link_modularity

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def link_modularity(graph, communities, **kwargs):
    """
    Quality function designed for directed graphs with overlapping communities.

    :param graph: a networkx/igraph object
    :param communities: NodeClustering object
    :return: FitnessResult object

    Example:

    >>> from cdlib.algorithms import louvain
    >>> from cdlib import evaluation
    >>> g = nx.karate_club_graph()
    >>> communities = louvain(g)
    >>> mod = evaluation.link_modularity(g,communities)

    :References:

    1. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. Journal of Statistical Mechanics: Theory and Experiment 2009(03), 03024 (2009)

    """

    graph = convert_graph_formats(graph, nx.Graph)

    return FitnessResult(score=cal_modularity(graph, communities.communities)) 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:27,代碼來源:fitness.py

示例15: link_modularity

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import karate_club_graph [as 別名]
def link_modularity(self):
        """
        Quality function designed for directed graphs with overlapping communities.

        :return: the link modularity score

        :Example:

        >>> from cdlib import evaluation
        >>> from cdlib.algorithms import louvain
        >>> g = nx.karate_club_graph()
        >>> communities = louvain(g)
        >>> mod = communities.link_modularity()

        """
        if self.__check_graph():
            return evaluation.link_modularity(self.graph, self)
        else:
            raise ValueError("Graph instance not specified") 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:21,代碼來源:node_clustering.py


注:本文中的networkx.karate_club_graph方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。