當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.isolates方法代碼示例

本文整理匯總了Python中networkx.isolates方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.isolates方法的具體用法?Python networkx.isolates怎麽用?Python networkx.isolates使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.isolates方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: decode_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def decode_graph(adj, prefix):
    adj = np.asmatrix(adj)
    G = nx.from_numpy_matrix(adj)
    # G.remove_nodes_from(nx.isolates(G))
    print('num of nodes: {}'.format(G.number_of_nodes()))
    print('num of edges: {}'.format(G.number_of_edges()))
    G_deg = nx.degree_histogram(G)
    G_deg_sum = [a * b for a, b in zip(G_deg, range(0, len(G_deg)))]
    print('average degree: {}'.format(sum(G_deg_sum) / G.number_of_nodes()))
    if nx.is_connected(G):
        print('average path length: {}'.format(nx.average_shortest_path_length(G)))
        print('average diameter: {}'.format(nx.diameter(G)))
    G_cluster = sorted(list(nx.clustering(G).values()))
    print('average clustering coefficient: {}'.format(sum(G_cluster) / len(G_cluster)))
    cycle_len = []
    cycle_all = nx.cycle_basis(G, 0)
    for item in cycle_all:
        cycle_len.append(len(item))
    print('cycles', cycle_len)
    print('cycle count', len(cycle_len))
    draw_graph(G, prefix=prefix) 
開發者ID:JiaxuanYou,項目名稱:graph-generation,代碼行數:23,代碼來源:utils.py

示例2: number_of_isolates

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def number_of_isolates(G):
    """Returns the number of isolates in the graph.

    An *isolate* is a node with no neighbors (that is, with degree
    zero). For directed graphs, this means no in-neighbors and no
    out-neighbors.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    int
        The number of degree zero nodes in the graph `G`.

    """
    # TODO This can be parallelized.
    return sum(1 for v in isolates(G)) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:21,代碼來源:isolate.py

示例3: create_required_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def create_required_graph(graph):
    """
    Strip a graph down to just the required nodes and edges.  Used for RPP.  Expected edge attribute "required" with
     True/False or 0/1 values.

    Args:
        graph (networkx MultiGraph):

    Returns:
        networkx MultiGraph with optional nodes and edges deleted
    """

    graph_req = graph.copy()  # preserve original structure

    # remove optional edges
    for e in list(graph_req.edges(data=True, keys=True)):
        if not e[3]['required']:
            graph_req.remove_edge(e[0], e[1], key=e[2])

    # remove any nodes left isolated after optional edges are removed (no required incident edges)
    for n in list(nx.isolates(graph_req)):
        graph_req.remove_node(n)

    return graph_req 
開發者ID:brooksandrew,項目名稱:postman_problems,代碼行數:26,代碼來源:graph.py

示例4: split_train_test_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def split_train_test_graph(G, testing_ratio=0.5, seed=42):
    node_num1, edge_num1 = len(G.nodes), len(G.edges)
    testing_edges_num = int(len(G.edges) * testing_ratio)
    random.seed(seed)
    testing_pos_edges = random.sample(G.edges, testing_edges_num)
    G_train = copy.deepcopy(G)
    # for edge in testing_pos_edges:
    #     node_u, node_v = edge # unpack edge
    #     if (G_train.degree(node_u) > 1 and G_train.degree(node_v) > 1):
    #         G_train.remove_edge(node_u, node_v)
    G_train.remove_nodes_from(testing_pos_edges)
    G_train.remove_nodes_from(nx.isolates(G_train))
    node_num2, edge_num2 = len(G_train.nodes), len(G_train.edges)
    assert node_num1 == node_num2
    return G_train, testing_pos_edges 
開發者ID:VHRanger,項目名稱:nodevectors,代碼行數:17,代碼來源:link_pred.py

示例5: remove_isolated_nodes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def remove_isolated_nodes(graph):
    """Remove isolated nodes from the network, in place.

    :param pybel.BELGraph graph: A BEL graph
    """
    nodes = list(nx.isolates(graph))
    graph.remove_nodes_from(nodes) 
開發者ID:pybel,項目名稱:pybel,代碼行數:9,代碼來源:utils.py

示例6: remove_isolated_nodes_op

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def remove_isolated_nodes_op(graph):
    """Build a new graph excluding the isolated nodes.

    :param pybel.BELGraph graph: A BEL graph
    :rtype: pybel.BELGraph
    """
    rv = graph.copy()
    nodes = list(nx.isolates(rv))
    rv.remove_nodes_from(nodes)
    return rv 
開發者ID:pybel,項目名稱:pybel,代碼行數:12,代碼來源:utils.py

示例7: isolates_

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def isolates_(self):
        """array-like of shape (n_isolates,): Indices of isolates.
        """

        import networkx as nx

        return np.array(list(nx.isolates(self.graphical_model_))) 
開發者ID:Y-oHr-N,項目名稱:kenchi,代碼行數:9,代碼來源:statistical.py

示例8: get_boundaries

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def get_boundaries(self):
        # Remove internal edges from a copy of our pixgrid graph and just get the boundaries
        self.outlines_graph = networkx.Graph(self.grid_graph)
        for pixel, attrs in self.pixel_graph.nodes(data=True):
            corners = attrs['corners']
            for neighbor in self.pixel_graph.neighbors(pixel):
                edge = corners & self.pixel_graph.nodes[neighbor]['corners']
                if len(edge) != 2:  # If the number of edges is not 2
                    print(edge)
                # Remove the internal edges in the outlines graph
                elif self.outlines_graph.has_edge(*edge):
                    self.outlines_graph.remove_edge(*edge)
        for node in list(networkx.isolates(self.outlines_graph)):
            # Remove the nodes from the outline graph too
            self.outlines_graph.remove_node(node) 
開發者ID:vvanirudh,項目名稱:Pixel-Art,代碼行數:17,代碼來源:algorithm.py

示例9: gen_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def gen_graph(self, f, i, label_dict, feat_dict, deg_as_tag):
        row = next(f).strip().split()
        n, label = [int(w) for w in row]
        if label not in label_dict:
            label_dict[label] = len(label_dict)
        g = nx.Graph()
        g.add_nodes_from(list(range(n)))
        node_tags = []
        for j in range(n):
            row = next(f).strip().split()
            tmp = int(row[1]) + 2
            row = [int(w) for w in row[:tmp]]
            if row[0] not in feat_dict:
                feat_dict[row[0]] = len(feat_dict)
            for k in range(2, len(row)):
                if j != row[k]:
                    g.add_edge(j, row[k])
            if len(row) > 2:
                node_tags.append(feat_dict[row[0]])
        g.label = label
        g.remove_nodes_from(list(nx.isolates(g)))
        if deg_as_tag:
            g.node_tags = list(dict(g.degree).values())
        else:
            g.node_tags = node_tags
        return g 
開發者ID:HongyangGao,項目名稱:Graph-U-Nets,代碼行數:28,代碼來源:data_loader.py

示例10: test_edgelist_integers

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def test_edgelist_integers(self):
        G=nx.convert_node_labels_to_integers(self.G)
        (fd,fname)=tempfile.mkstemp()
        nx.write_edgelist(G,fname)  
        H=nx.read_edgelist(fname,nodetype=int)
        # isolated nodes are not written in edgelist
        G.remove_nodes_from(nx.isolates(G))
        assert_nodes_equal(H.nodes(),G.nodes())
        assert_edges_equal(H.edges(),G.edges())
        os.close(fd)
        os.unlink(fname) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:13,代碼來源:test_edgelist.py

示例11: test_edgelist_integers

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def test_edgelist_integers(self):
        G=nx.convert_node_labels_to_integers(self.G)
        (fd,fname)=tempfile.mkstemp()
        bipartite.write_edgelist(G,fname)  
        H=bipartite.read_edgelist(fname,nodetype=int)
        # isolated nodes are not written in edgelist
        G.remove_nodes_from(nx.isolates(G))
        assert_nodes_equal(H.nodes(),G.nodes())
        assert_edges_equal(H.edges(),G.edges())
        os.close(fd)
        os.unlink(fname) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:13,代碼來源:test_edgelist.py

示例12: isolates

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def isolates(G):
    """Return list of isolates in the graph.

    Isolates are nodes with no neighbors (degree zero).

    Parameters
    ----------
    G : graph
        A networkx graph

    Returns
    -------
    isolates : list
       List of isolate nodes.
    
    Examples
    --------
    >>> G = nx.Graph()
    >>> G.add_edge(1,2)
    >>> G.add_node(3)
    >>> nx.isolates(G)
    [3]

    To remove all isolates in the graph use
    >>> G.remove_nodes_from(nx.isolates(G))
    >>> G.nodes()
    [1, 2]

    For digraphs isolates have zero in-degree and zero out_degre
    >>> G = nx.DiGraph([(0,1),(1,2)])
    >>> G.add_node(3)
    >>> nx.isolates(G)
    [3]
    """
    return [n for (n,d) in G.degree_iter() if d==0] 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:37,代碼來源:isolate.py

示例13: getThresholds

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def getThresholds(clargs, grph):
    thresDict = collections.OrderedDict([
    ('0', "Continue"),
    ('1', "Drop isolates"),
    ('2', "Remove self loops"),
    ('3', "Remove edges below some weight"),
    ('4', "Remove edges above some weight"),
    ('5', "Remove nodes below some degree"),
    ('6', "Remove nodes above some degree"),
    ])
    print("The network contains {0} nodes and {1} edges, of which {2} are isolated and {3} are self loops.".format(len(list(grph.nodes())), len(list(grph.edges())), len(list(nx.isolates(grph))), len(list(grph.selfloop_edges()))))
    thresID = int(inputMenu(thresDict, header = "What type of filtering to you want? "))
    if thresID == 0:
        return grph
    elif thresID == 1:
        metaknowledge.dropNodesByDegree(grph, minDegree = 1)
        return getThresholds(clargs, grph)
    elif thresID == 2:
        metaknowledge.dropEdges(grph, dropSelfLoops = True)
        return getThresholds(clargs, grph)
    elif thresID == 3:
        metaknowledge.dropEdges(grph, minWeight = getNum("What is the minumum weight for an edge to be included? "))
        return getThresholds(clargs, grph)
    elif thresID == 4:
        metaknowledge.dropEdges(grph, minWeight = getNum("What is the maximum weight for an edge to be included? "))
        return getThresholds(clargs, grph)
    elif thresID == 5:
        metaknowledge.dropNodesByDegree(grph, minDegree = getNum("What is the minumum degree for an edge to be included? "))
        return getThresholds(clargs, grph)
    else:
        metaknowledge.dropNodesByDegree(grph, minDegree = getNum("What is the maximum degree for an edge to be included? "))
        return getThresholds(clargs, grph) 
開發者ID:UWNETLAB,項目名稱:metaknowledge,代碼行數:34,代碼來源:metaknowledgeCLI.py

示例14: split_train_test_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def split_train_test_graph(input_edgelist, seed, testing_ratio=0.2, weighted=False):
    
    if (weighted):
        G = nx.read_weighted_edgelist(input_edgelist)
    else:
        G = nx.read_edgelist(input_edgelist)
    node_num1, edge_num1 = len(G.nodes), len(G.edges)
    print('Original Graph: nodes:', node_num1, 'edges:', edge_num1)
    testing_edges_num = int(len(G.edges) * testing_ratio)
    random.seed(seed)
    testing_pos_edges = random.sample(G.edges, testing_edges_num)
    G_train = copy.deepcopy(G)
    for edge in testing_pos_edges:
        node_u, node_v = edge
        if (G_train.degree(node_u) > 1 and G_train.degree(node_v) > 1):
            G_train.remove_edge(node_u, node_v)

    G_train.remove_nodes_from(nx.isolates(G_train))
    node_num2, edge_num2 = len(G_train.nodes), len(G_train.edges)
    assert node_num1 == node_num2
    train_graph_filename = 'graph_train.edgelist'
    if weighted:
        nx.write_edgelist(G_train, train_graph_filename, data=['weight'])
    else:
        nx.write_edgelist(G_train, train_graph_filename, data=False)

    node_num1, edge_num1 = len(G_train.nodes), len(G_train.edges)
    print('Training Graph: nodes:', node_num1, 'edges:', edge_num1)
    return G, G_train, testing_pos_edges, train_graph_filename 
開發者ID:xiangyue9607,項目名稱:BioNEV,代碼行數:31,代碼來源:utils.py

示例15: test_edgelist_integers

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import isolates [as 別名]
def test_edgelist_integers(self):
        G = nx.convert_node_labels_to_integers(self.G)
        (fd, fname) = tempfile.mkstemp()
        nx.write_edgelist(G, fname)
        H = nx.read_edgelist(fname, nodetype=int)
        # isolated nodes are not written in edgelist
        G.remove_nodes_from(list(nx.isolates(G)))
        assert_nodes_equal(list(H), list(G))
        assert_edges_equal(list(H.edges()), list(G.edges()))
        os.close(fd)
        os.unlink(fname) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:13,代碼來源:test_edgelist.py


注:本文中的networkx.isolates方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。