本文整理匯總了Python中networkx.is_strongly_connected方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.is_strongly_connected方法的具體用法?Python networkx.is_strongly_connected怎麽用?Python networkx.is_strongly_connected使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.is_strongly_connected方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: is_connected
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def is_connected(C):
"""
Return `True` if the square connection matrix `C` is connected, i.e., every
unit is reachable from every other unit, otherwise `False`.
Note
----
This function only performs the check if the NetworkX package is available:
https://networkx.github.io/
"""
if nx is None:
return True
G = nx.from_numpy_matrix(C, create_using=nx.DiGraph())
return nx.is_strongly_connected(G)
示例2: validate_cuts
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func):
assert_true(all(n in G for n in partition[0]),
msg=msg.format(flow_func.__name__))
assert_true(all(n in G for n in partition[1]),
msg=msg.format(flow_func.__name__))
cutset = compute_cutset(G, partition)
assert_true(all(G.has_edge(u, v) for (u, v) in cutset),
msg=msg.format(flow_func.__name__))
assert_equal(solnValue, sum(G[u][v][capacity] for (u, v) in cutset),
msg=msg.format(flow_func.__name__))
H = G.copy()
H.remove_edges_from(cutset)
if not G.is_directed():
assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
else:
assert_false(nx.is_strongly_connected(H),
msg=msg.format(flow_func.__name__))
示例3: validate_cuts
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def validate_cuts(G, s, t, solnValue, partition, capacity, flow_func):
assert_true(all(n in G for n in partition[0]),
msg=msg.format(flow_func.__name__))
assert_true(all(n in G for n in partition[1]),
msg=msg.format(flow_func.__name__))
cutset = compute_cutset(G, partition)
assert_true(all(G.has_edge(u, v) for (u, v) in cutset),
msg=msg.format(flow_func.__name__))
assert_equal(solnValue, sum(G[u][v][capacity] for (u, v) in cutset),
msg=msg.format(flow_func.__name__))
H = G.copy()
H.remove_edges_from(cutset)
if not G.is_directed():
assert_false(nx.is_connected(H), msg=msg.format(flow_func.__name__))
else:
assert_false(nx.is_strongly_connected(H),
msg=msg.format(flow_func.__name__))
示例4: test_synthetic_network
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_synthetic_network():
# Load in the GeoJSON as a JSON and convert to a dictionary
geojson_path = fixture('synthetic_east_bay.geojson')
with open(geojson_path, 'r') as gjf:
reference_geojson = json.load(gjf)
G1 = load_synthetic_network_as_graph(reference_geojson)
# This fixture gets broken into 15 chunks, so 15 + 1 = 16
nodes = list(G1.nodes())
assert len(nodes) == 16
# And since it is one-directional, it gets the same edges as chunks
edges = list(G1.edges())
assert len(edges) == 15
# Since this is a one-way graph, with no other context, the
# graph will be weakly connected
assert nx.is_strongly_connected(G1) is False
# Go back to the GeoJSON and set optional bidirectional flag
for i in range(len(reference_geojson['features'])):
reference_geojson['features'][i]['properties']['bidirectional'] = True
G2 = load_synthetic_network_as_graph(reference_geojson)
# We re-use the same stop nodes for both directions
nodes = list(G2.nodes())
assert len(nodes) == 16
# Double the number of edges as before
edges = list(G2.edges())
assert len(edges) == 15 * 2
# But now, by asking for a bidirectional graph, we can assert strong
assert nx.is_strongly_connected(G2)
示例5: test_synthetic_network_with_custom_stops
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_synthetic_network_with_custom_stops():
# Load in the GeoJSON as a JSON and convert to a dictionary
geojson_path = fixture('synthetic_east_bay.geojson')
with open(geojson_path, 'r') as gjf:
reference_geojson = json.load(gjf)
# Add in specific, custom stops under new properties key
custom_stops = [[-122.29225158691406, 37.80876678753658],
[-122.28886127471924, 37.82341261847038],
[-122.2701072692871, 37.83005652796547]]
reference_geojson['features'][0]['properties']['stops'] = custom_stops
G1 = load_synthetic_network_as_graph(reference_geojson)
# Sanity check the outputs against the custom stops input
assert len(list(G1.nodes())) == (len(custom_stops) + 2)
assert len(list(G1.edges())) == (len(custom_stops) + 1)
# Go back to the GeoJSON and set optional bidirectional flag
reference_geojson['features'][0]['properties']['bidirectional'] = True
G2 = load_synthetic_network_as_graph(reference_geojson)
# We re-use the same stop nodes for both directions
nodes = list(G2.nodes())
assert len(nodes) == (len(custom_stops) + 2)
# Double the number of edges as before
edges = list(G2.edges())
assert len(edges) == (len(custom_stops) + 1) * 2
# But now, by asking for a bidirectional graph, we can assert strong
assert nx.is_strongly_connected(G2)
示例6: is_eulerian
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def is_eulerian(G):
"""Return True if G is an Eulerian graph, False otherwise.
An Eulerian graph is a graph with an Eulerian circuit.
Parameters
----------
G : graph
A NetworkX Graph
Examples
--------
>>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False
Notes
-----
This implementation requires the graph to be connected
(or strongly connected for directed graphs).
"""
if G.is_directed():
# Every node must have equal in degree and out degree
for n in G.nodes_iter():
if G.in_degree(n) != G.out_degree(n):
return False
# Must be strongly connected
if not nx.is_strongly_connected(G):
return False
else:
# An undirected Eulerian graph has no vertices of odd degrees
for v,d in G.degree_iter():
if d % 2 != 0:
return False
# Must be connected
if not nx.is_connected(G):
return False
return True
示例7: test_is_strongly_connected
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_is_strongly_connected(self):
for G, C in self.gc:
if len(C) == 1:
assert_true(nx.is_strongly_connected(G))
else:
assert_false(nx.is_strongly_connected(G))
示例8: test_connected_raise
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_connected_raise(self):
G=nx.Graph()
assert_raises(NetworkXNotImplemented, nx.strongly_connected_components, G)
assert_raises(NetworkXNotImplemented, nx.kosaraju_strongly_connected_components, G)
assert_raises(NetworkXNotImplemented, nx.strongly_connected_components_recursive, G)
assert_raises(NetworkXNotImplemented, nx.strongly_connected_component_subgraphs, G)
assert_raises(NetworkXNotImplemented, nx.is_strongly_connected, G)
assert_raises(nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph())
assert_raises(NetworkXNotImplemented, nx.condensation, G)
示例9: is_eulerian
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def is_eulerian(G):
"""Returns True if and only if `G` is Eulerian.
A graph is *Eulerian* if it has an Eulerian circuit. An *Eulerian
circuit* is a closed walk that includes each edge of a graph exactly
once.
Parameters
----------
G : NetworkX graph
A graph, either directed or undirected.
Examples
--------
>>> nx.is_eulerian(nx.DiGraph({0: [3], 1: [2], 2: [3], 3: [0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False
Notes
-----
If the graph is not connected (or not strongly connected, for
directed graphs), this function returns False.
"""
if G.is_directed():
# Every node must have equal in degree and out degree and the
# graph must be strongly connected
return (all(G.in_degree(n) == G.out_degree(n) for n in G) and
nx.is_strongly_connected(G))
# An undirected Eulerian graph has no vertices of odd degree and
# must be connected.
return all(d % 2 == 0 for v, d in G.degree()) and nx.is_connected(G)
示例10: test_is_strongly_connected
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_is_strongly_connected(self):
for G, C in self.gc:
if len(C) == 1:
assert_true(nx.is_strongly_connected(G))
else:
assert_false(nx.is_strongly_connected(G))
# deprecated
示例11: test_null_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_null_graph(self):
G = nx.DiGraph()
assert_equal(list(nx.strongly_connected_components(G)), [])
assert_equal(list(nx.kosaraju_strongly_connected_components(G)), [])
assert_equal(list(nx.strongly_connected_components_recursive(G)), [])
assert_equal(len(nx.condensation(G)), 0)
assert_raises(nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph())
示例12: test_connected_raise
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def test_connected_raise(self):
G = nx.Graph()
assert_raises(NetworkXNotImplemented, nx.strongly_connected_components, G)
assert_raises(NetworkXNotImplemented, nx.kosaraju_strongly_connected_components, G)
assert_raises(NetworkXNotImplemented, nx.strongly_connected_components_recursive, G)
assert_raises(NetworkXNotImplemented, nx.is_strongly_connected, G)
assert_raises(nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph())
assert_raises(NetworkXNotImplemented, nx.condensation, G)
# deprecated
assert_raises(NetworkXNotImplemented, nx.strongly_connected_component_subgraphs, G)
# Commented out due to variability on Travis-CI hardware/operating systems
# def test_linear_time(self):
# # See Issue #2831
# count = 100 # base case
# dg = nx.DiGraph()
# dg.add_nodes_from([0, 1])
# for i in range(2, count):
# dg.add_node(i)
# dg.add_edge(i, 1)
# dg.add_edge(0, i)
# t = time.time()
# ret = tuple(nx.strongly_connected_components(dg))
# dt = time.time() - t
#
# count = 200
# dg = nx.DiGraph()
# dg.add_nodes_from([0, 1])
# for i in range(2, count):
# dg.add_node(i)
# dg.add_edge(i, 1)
# dg.add_edge(0, i)
# t = time.time()
# ret = tuple(nx.strongly_connected_components(dg))
# dt2 = time.time() - t
# assert_less(dt2, dt * 2.3) # should be 2 times longer for this graph
示例13: get_largest_component
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def get_largest_component(G, strongly=False):
"""
https://github.com/gboeing/osmnx/blob/master/osmnx/utils.py
Return a subgraph of the largest weakly or strongly connected component
from a directed graph.
Parameters
----------
G : networkx multidigraph
strongly : bool
if True, return the largest strongly instead of weakly connected
component
Returns
-------
G : networkx multidigraph
the largest connected component subgraph from the original graph
"""
start_time = time.time()
original_len = len(list(G.nodes()))
if strongly:
# if the graph is not connected retain only the largest strongly connected component
if not nx.is_strongly_connected(G):
# get all the strongly connected components in graph then identify the largest
sccs = nx.strongly_connected_components(G)
largest_scc = max(sccs, key=len)
G = induce_subgraph(G, largest_scc)
msg = ('Graph was not connected, retained only the largest strongly '
'connected component ({:,} of {:,} total nodes) in {:.2f} seconds')
print(msg.format(len(list(G.nodes())), original_len, time.time()-start_time))
else:
# if the graph is not connected retain only the largest weakly connected component
if not nx.is_weakly_connected(G):
# get all the weakly connected components in graph then identify the largest
wccs = nx.weakly_connected_components(G)
largest_wcc = max(wccs, key=len)
G = induce_subgraph(G, largest_wcc)
msg = ('Graph was not connected, retained only the largest weakly '
'connected component ({:,} of {:,} total nodes) in {:.2f} seconds')
print(msg.format(len(list(G.nodes())), original_len, time.time()-start_time))
return G
示例14: get_largest_component
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_strongly_connected [as 別名]
def get_largest_component(G, strongly=False):
"""
Get subgraph of MultiDiGraph's largest weakly/strongly connected component.
Parameters
----------
G : networkx.MultiDiGraph
input graph
strongly : bool
if True, return the largest strongly instead of weakly connected
component
Returns
-------
G : networkx.MultiDiGraph
the largest connected component subgraph from the original graph
"""
original_len = len(list(G.nodes()))
if strongly:
# if the graph is not connected retain only the largest strongly connected component
if not nx.is_strongly_connected(G):
# get all the strongly connected components in graph then identify the largest
sccs = nx.strongly_connected_components(G)
largest_scc = max(sccs, key=len)
G = induce_subgraph(G, largest_scc)
msg = (
f"Graph was not connected, retained only the largest strongly "
f"connected component ({len(G)} of {original_len} total nodes)"
)
utils.log(msg)
else:
# if the graph is not connected retain only the largest weakly connected component
if not nx.is_weakly_connected(G):
# get all the weakly connected components in graph then identify the largest
wccs = nx.weakly_connected_components(G)
largest_wcc = max(wccs, key=len)
G = induce_subgraph(G, largest_wcc)
msg = (
f"Graph was not connected, retained only the largest weakly "
f"connected component ({len(G)} of {original_len} total nodes)"
)
utils.log(msg)
return G