本文整理匯總了Python中networkx.is_chordal方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.is_chordal方法的具體用法?Python networkx.is_chordal怎麽用?Python networkx.is_chordal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.is_chordal方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_clique_tree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def get_clique_tree(nodes, edges):
"""Given a set of int nodes i and edges (i,j), returns an nx.Graph object G
which is a clique tree, where:
- G.node[i]['members'] contains the set of original nodes in the ith
maximal clique
- G[i][j]['members'] contains the set of original nodes in the seperator
set between maximal cliques i and j
Note: This method is currently only implemented for chordal graphs; TODO:
add a step to triangulate non-chordal graphs.
"""
# Form the original graph G1
G1 = nx.Graph()
G1.add_nodes_from(nodes)
G1.add_edges_from(edges)
# Check if graph is chordal
# TODO: Add step to triangulate graph if not
if not nx.is_chordal(G1):
raise NotImplementedError("Graph triangulation not implemented.")
# Create maximal clique graph G2
# Each node is a maximal clique C_i
# Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0
G2 = nx.Graph()
for i, c in enumerate(nx.chordal_graph_cliques(G1)):
G2.add_node(i, members=c)
for i in G2.nodes:
for j in G2.nodes:
S = G2.node[i]["members"].intersection(G2.node[j]["members"])
w = len(S)
if w > 0:
G2.add_edge(i, j, weight=w, members=S)
# Return a minimum spanning tree of G2
return nx.minimum_spanning_tree(G2)
示例2: chordal_graph_cliques
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def chordal_graph_cliques(G):
"""Returns the set of maximal cliques of a chordal graph.
The algorithm breaks the graph in connected components and performs a
maximum cardinality search in each component to get the cliques.
Parameters
----------
G : graph
A NetworkX graph
Returns
-------
cliques : A set containing the maximal cliques in G.
Raises
------
NetworkXError
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If the
input graph is found to be non-chordal, a NetworkXError is raised.
Examples
--------
>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)
"""
if not is_chordal(G):
raise nx.NetworkXError("Input graph is not chordal.")
cliques = set()
for C in nx.connected.connected_component_subgraphs(G):
cliques |= _connected_chordal_graph_cliques(C)
return cliques
示例3: test_is_chordal
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def test_is_chordal(self):
assert_false(nx.is_chordal(self.non_chordal_G))
assert_true(nx.is_chordal(self.chordal_G))
assert_true(nx.is_chordal(self.connected_chordal_G))
assert_true(nx.is_chordal(nx.complete_graph(3)))
assert_true(nx.is_chordal(nx.cycle_graph(3)))
assert_false(nx.is_chordal(nx.cycle_graph(5)))
示例4: is_chordal
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def is_chordal(edge_list):
"""
Check if the graph is chordal/triangulated.
Parameters
----------
*edge_list* : a list of lists (optional)
The edges to check (if not self.E)
Returns
-------
*nx.is_chordal(G)* : a boolean
Whether the graph is chordal or not
Effects
-------
None
Notes
-----
Again, do we need networkx for this? Eventually should
write this check on our own.
"""
G = nx.Graph(list(edge_list))
return nx.is_chordal(G)
示例5: chordal_graph_cliques
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def chordal_graph_cliques(G):
"""Returns the set of maximal cliques of a chordal graph.
The algorithm breaks the graph in connected components and performs a
maximum cardinality search in each component to get the cliques.
Parameters
----------
G : graph
A NetworkX graph
Returns
-------
cliques : A set containing the maximal cliques in G.
Raises
------
NetworkXError
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
:exc:`NetworkXError` is raised.
The algorithm can only be applied to chordal graphs. If the
input graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
Examples
--------
>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)
"""
if not is_chordal(G):
raise nx.NetworkXError("Input graph is not chordal.")
cliques = set()
for C in nx.connected.connected_component_subgraphs(G):
cliques |= _connected_chordal_graph_cliques(C)
return cliques
示例6: get_clique_tree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def get_clique_tree(nodes: Iterable[int], edges: List[Tuple[int, int]]) -> nx.Graph:
"""
Given a set of int nodes i and edges (i,j), returns a clique tree.
Clique tree is an object G for which:
- G.node[i]['members'] contains the set of original nodes in the ith
maximal clique
- G[i][j]['members'] contains the set of original nodes in the seperator
set between maximal cliques i and j
Note: This method is currently only implemented for chordal graphs; TODO:
add a step to triangulate non-chordal graphs.
Parameters
----------
nodes
A list of nodes indices
edges
A list of tuples, where each tuple has indices for connected nodes
Returns
-------
networkx.Graph
An object G representing clique tree
"""
# Form the original graph G1
G1 = nx.Graph()
G1.add_nodes_from(nodes)
G1.add_edges_from(edges)
# Check if graph is chordal
# TODO: Add step to triangulate graph if not
if not nx.is_chordal(G1):
raise NotImplementedError("Graph triangulation not implemented.")
# Create maximal clique graph G2
# Each node is a maximal clique C_i
# Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0
G2 = nx.Graph()
for i, c in enumerate(nx.chordal_graph_cliques(G1)):
G2.add_node(i, members=c)
for i in G2.nodes:
for j in G2.nodes:
S = G2.node[i]["members"].intersection(G2.node[j]["members"])
w = len(S)
if w > 0:
G2.add_edge(i, j, weight=w, members=S)
# Return a minimum spanning tree of G2
return nx.minimum_spanning_tree(G2)
示例7: is_chordal
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def is_chordal(G):
"""Checks whether G is a chordal graph.
A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).
Parameters
----------
G : graph
A NetworkX graph.
Returns
-------
chordal : bool
True if G is a chordal graph and False otherwise.
Raises
------
NetworkXError
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
Examples
--------
>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True
Notes
-----
The routine tries to go through every node following maximum cardinality
search. It returns False when it finds that the separator for any node
is not a clique. Based on the algorithms in [1]_.
References
----------
.. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
pp. 566–579.
"""
if G.is_directed():
raise nx.NetworkXError('Directed graphs not supported')
if G.is_multigraph():
raise nx.NetworkXError('Multiply connected graphs not supported.')
if len(_find_chordality_breaker(G))==0:
return True
else:
return False
示例8: chordal_graph_treewidth
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def chordal_graph_treewidth(G):
"""Returns the treewidth of the chordal graph G.
Parameters
----------
G : graph
A NetworkX graph
Returns
-------
treewidth : int
The size of the largest clique in the graph minus one.
Raises
------
NetworkXError
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If
the input graph is found to be non-chordal, a NetworkXError is raised.
Examples
--------
>>> import networkx as nx
>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3
References
----------
.. [1] http://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
"""
if not is_chordal(G):
raise nx.NetworkXError("Input graph is not chordal.")
max_clique = -1
for clique in nx.chordal_graph_cliques(G):
max_clique = max(max_clique,len(clique))
return max_clique - 1
示例9: is_chordal
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def is_chordal(G):
"""Checks whether G is a chordal graph.
A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).
Parameters
----------
G : graph
A NetworkX graph.
Returns
-------
chordal : bool
True if G is a chordal graph and False otherwise.
Raises
------
NetworkXError
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
:exc:`NetworkXError` is raised.
Examples
--------
>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True
Notes
-----
The routine tries to go through every node following maximum cardinality
search. It returns False when it finds that the separator for any node
is not a clique. Based on the algorithms in [1]_.
References
----------
.. [1] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
pp. 566–579.
"""
if G.is_directed():
raise nx.NetworkXError('Directed graphs not supported')
if G.is_multigraph():
raise nx.NetworkXError('Multiply connected graphs not supported.')
if len(_find_chordality_breaker(G)) == 0:
return True
else:
return False
示例10: chordal_graph_treewidth
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import is_chordal [as 別名]
def chordal_graph_treewidth(G):
"""Returns the treewidth of the chordal graph G.
Parameters
----------
G : graph
A NetworkX graph
Returns
-------
treewidth : int
The size of the largest clique in the graph minus one.
Raises
------
NetworkXError
The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
:exc:`NetworkXError` is raised.
The algorithm can only be applied to chordal graphs. If
the input graph is found to be non-chordal, a :exc:`NetworkXError` is raised.
Examples
--------
>>> import networkx as nx
>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3
References
----------
.. [1] https://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
"""
if not is_chordal(G):
raise nx.NetworkXError("Input graph is not chordal.")
max_clique = -1
for clique in nx.chordal_graph_cliques(G):
max_clique = max(max_clique, len(clique))
return max_clique - 1