當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.from_numpy_matrix方法代碼示例

本文整理匯總了Python中networkx.from_numpy_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.from_numpy_matrix方法的具體用法?Python networkx.from_numpy_matrix怎麽用?Python networkx.from_numpy_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.from_numpy_matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _calc_graph_func

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def _calc_graph_func(p):
    con, times_chunk, graph_func = p
    vals = []
    now = time.time()
    for run, t in enumerate(times_chunk):
        utils.time_to_go(now, run, len(times_chunk), 10)
        con_t = con[:, :, t]
        g = nx.from_numpy_matrix(con_t)
        if graph_func == 'closeness_centrality':
            x = nx.closeness_centrality(g)
        elif graph_func == 'degree_centrality':
            x = nx.degree_centrality(g)
        elif graph_func == 'eigenvector_centrality':
            x = nx.eigenvector_centrality(g, max_iter=10000)
        elif graph_func == 'katz_centrality':
            x = nx.katz_centrality(g, max_iter=100000)
        else:
            raise Exception('Wrong graph func!')
        vals.append([x[k] for k in range(len(x))])
    vals = np.array(vals)
    return vals, times_chunk 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:23,代碼來源:analyse_meg_epilepsy_clips.py

示例2: time_align_visualize

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def time_align_visualize(alignments, time, y, namespace='time_align'):
    plt.figure()
    heat = np.flip(alignments + alignments.T +
                   np.eye(alignments.shape[0]), axis=0)
    sns.heatmap(heat, cmap="YlGnBu", vmin=0, vmax=1)
    plt.savefig(namespace + '_heatmap.svg')

    G = nx.from_numpy_matrix(alignments)
    G = nx.maximum_spanning_tree(G)

    pos = {}
    for i in range(len(G.nodes)):
        pos[i] = np.array([time[i], y[i]])

    mst_edges = set(nx.maximum_spanning_tree(G).edges())
    
    weights = [ G[u][v]['weight'] if (not (u, v) in mst_edges) else 8
                for u, v in G.edges() ]
    
    plt.figure()
    nx.draw(G, pos, edges=G.edges(), width=10)
    plt.ylim([-1, 1])
    plt.savefig(namespace + '.svg') 
開發者ID:brianhie,項目名稱:scanorama,代碼行數:25,代碼來源:time_align.py

示例3: neighborhoods_weights_to_root

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def neighborhoods_weights_to_root(adjacency, sequence, size):
    def _neighborhoods_weights_to_root(adjacency, sequence):
        graph = nx.from_numpy_matrix(adjacency)

        neighborhoods = np.zeros((sequence.shape[0], size), dtype=np.int32)
        neighborhoods.fill(-1)

        for i in xrange(0, sequence.shape[0]):
            n = sequence[i]
            if n < 0:
                break

            shortest = nx.single_source_dijkstra_path_length(graph, n).items()
            shortest = sorted(shortest, key=lambda v: v[1])
            shortest = shortest[:size]

            for j in xrange(0, min(size, len(shortest))):
                neighborhoods[i][j] = shortest[j][0]

        return neighborhoods

    return tf.py_func(_neighborhoods_weights_to_root, [adjacency, sequence],
                      tf.int32, stateful=False,
                      name='neighborhoods_weights_to_root') 
開發者ID:rusty1s,項目名稱:graph-based-image-classification,代碼行數:26,代碼來源:neighborhood_assembly.py

示例4: decode_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def decode_graph(adj, prefix):
    adj = np.asmatrix(adj)
    G = nx.from_numpy_matrix(adj)
    # G.remove_nodes_from(nx.isolates(G))
    print('num of nodes: {}'.format(G.number_of_nodes()))
    print('num of edges: {}'.format(G.number_of_edges()))
    G_deg = nx.degree_histogram(G)
    G_deg_sum = [a * b for a, b in zip(G_deg, range(0, len(G_deg)))]
    print('average degree: {}'.format(sum(G_deg_sum) / G.number_of_nodes()))
    if nx.is_connected(G):
        print('average path length: {}'.format(nx.average_shortest_path_length(G)))
        print('average diameter: {}'.format(nx.diameter(G)))
    G_cluster = sorted(list(nx.clustering(G).values()))
    print('average clustering coefficient: {}'.format(sum(G_cluster) / len(G_cluster)))
    cycle_len = []
    cycle_all = nx.cycle_basis(G, 0)
    for item in cycle_all:
        cycle_len.append(len(item))
    print('cycles', cycle_len)
    print('cycle count', len(cycle_len))
    draw_graph(G, prefix=prefix) 
開發者ID:JiaxuanYou,項目名稱:graph-generation,代碼行數:23,代碼來源:utils.py

示例5: __getitem__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def __getitem__(self, idx):
        adj_copy = self.adj_all[idx].copy()
        x_batch = np.zeros((self.n, self.max_prev_node))  # here zeros are padded for small graph
        x_batch[0,:] = 1 # the first input token is all ones
        y_batch = np.zeros((self.n, self.max_prev_node))  # here zeros are padded for small graph
        # generate input x, y pairs
        len_batch = adj_copy.shape[0]
        x_idx = np.random.permutation(adj_copy.shape[0])
        adj_copy = adj_copy[np.ix_(x_idx, x_idx)]
        adj_copy_matrix = np.asmatrix(adj_copy)
        G = nx.from_numpy_matrix(adj_copy_matrix)
        # then do bfs in the permuted G
        start_idx = np.random.randint(adj_copy.shape[0])
        x_idx = np.array(bfs_seq(G, start_idx))
        adj_copy = adj_copy[np.ix_(x_idx, x_idx)]
        adj_encoded = encode_adj(adj_copy.copy(), max_prev_node=self.max_prev_node)
        # get x and y and adj
        # for small graph the rest are zero padded
        y_batch[0:adj_encoded.shape[0], :] = adj_encoded
        x_batch[1:adj_encoded.shape[0] + 1, :] = adj_encoded
        return {'x':x_batch,'y':y_batch, 'len':len_batch} 
開發者ID:JiaxuanYou,項目名稱:graph-generation,代碼行數:23,代碼來源:data.py

示例6: is_connected

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def is_connected(C):
        """
        Return `True` if the square connection matrix `C` is connected, i.e., every
        unit is reachable from every other unit, otherwise `False`.

        Note
        ----

        This function only performs the check if the NetworkX package is available:

          https://networkx.github.io/

        """
        if nx is None:
            return True

        G = nx.from_numpy_matrix(C, create_using=nx.DiGraph())
        return nx.is_strongly_connected(G) 
開發者ID:frsong,項目名稱:pycog,代碼行數:20,代碼來源:connectivity.py

示例7: test_from_numpy_matrix_type

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def test_from_numpy_matrix_type(self):
        A=np.matrix([[1]])
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),int)

        A=np.matrix([[1]]).astype(np.float)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),float)

        A=np.matrix([[1]]).astype(np.str)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),str)

        A=np.matrix([[1]]).astype(np.bool)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),bool)

        A=np.matrix([[1]]).astype(np.complex)
        G=nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']),complex)

        A=np.matrix([[1]]).astype(np.object)
        assert_raises(TypeError,nx.from_numpy_matrix,A) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:25,代碼來源:test_convert_numpy.py

示例8: test_edmonds1_minbranch

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def test_edmonds1_minbranch():
    # Using -G_array and min should give the same as optimal_arborescence_1,
    # but with all edges negative.
    edges = [ (u, v, -w) for (u, v, w) in optimal_arborescence_1 ]

    G = nx.DiGraph()
    G = nx.from_numpy_matrix(-G_array, create_using=G)

    # Quickly make sure max branching is empty.
    x = branchings.maximum_branching(G)
    x_ = build_branching([])
    assert_equal_branchings(x, x_)

    # Now test the min branching.
    x = branchings.minimum_branching(G)
    x_ = build_branching(edges)
    assert_equal_branchings(x, x_) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:19,代碼來源:test_branchings.py

示例9: test_edmonds1_minbranch

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def test_edmonds1_minbranch():
    # Using -G_array and min should give the same as optimal_arborescence_1,
    # but with all edges negative.
    edges = [(u, v, -w) for (u, v, w) in optimal_arborescence_1]

    G = nx.DiGraph()
    G = nx.from_numpy_matrix(-G_array, create_using=G)

    # Quickly make sure max branching is empty.
    x = branchings.maximum_branching(G)
    x_ = build_branching([])
    assert_equal_branchings(x, x_)

    # Now test the min branching.
    x = branchings.minimum_branching(G)
    x_ = build_branching(edges)
    assert_equal_branchings(x, x_) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:19,代碼來源:test_branchings.py

示例10: test_from_numpy_matrix_type

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def test_from_numpy_matrix_type(self):
        A = np.matrix([[1]])
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), int)

        A = np.matrix([[1]]).astype(np.float)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), float)

        A = np.matrix([[1]]).astype(np.str)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), str)

        A = np.matrix([[1]]).astype(np.bool)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), bool)

        A = np.matrix([[1]]).astype(np.complex)
        G = nx.from_numpy_matrix(A)
        assert_equal(type(G[0][0]['weight']), complex)

        A = np.matrix([[1]]).astype(np.object)
        assert_raises(TypeError, nx.from_numpy_matrix, A) 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:25,代碼來源:test_convert_numpy.py

示例11: sort_words

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def sort_words(vertex_source,  window = 2, pagerank_config = {'alpha': 0.85,}):
    """將單詞按關鍵程度從大到小排序

    Keyword arguments:
    vertex_source   --  二維列表,子列表代表句子,子列表的元素是單詞,這些單詞用來構造pagerank中的節點
    edge_source     --  二維列表,子列表代表句子,子列表的元素是單詞,根據單詞位置關係構造pagerank中的邊
    window          --  一個句子中相鄰的window個單詞,兩兩之間認為有邊
    pagerank_config --  pagerank的設置
    """
    sorted_words   = []
    word_index     = {}
    index_word     = {}
    _vertex_source = vertex_source
    words_number   = 0
    for word_list in _vertex_source:
        for word in word_list:
            if not word in word_index:
                word_index[word] = words_number
                index_word[words_number] = word
                words_number += 1

    graph = np.zeros((words_number, words_number))
    
    for word_list in _vertex_source:
        for w1, w2 in combine(word_list, window):
            if w1 in word_index and w2 in word_index:
                index1 = word_index[w1]
                index2 = word_index[w2]
                graph[index1][index2] = 1.0
                graph[index2][index1] = 1.0

    debug('graph:\n', graph)
    
    nx_graph = nx.from_numpy_matrix(graph)
    scores = nx.pagerank(nx_graph, **pagerank_config)          # this is a dict
    sorted_scores = sorted(scores.items(), key = lambda item: item[1], reverse=True)
    for index, score in sorted_scores:
        item = AttrDict(word=index_word[index], weight=score)
        sorted_words.append(item)

    return sorted_words 
開發者ID:ouprince,項目名稱:text-rank,代碼行數:43,代碼來源:util.py

示例12: plot_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def plot_graph(self, am, position=None, cls=None, fig_name='graph.png'):

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")

            g = nx.from_numpy_matrix(am)

            if position is None:
                position=nx.drawing.circular_layout(g)

            fig = plt.figure()

            if cls is None:
                cls='r'
            else:
                # Make a user-defined colormap.
                cm1 = mcol.LinearSegmentedColormap.from_list("MyCmapName", ["r", "b"])

                # Make a normalizer that will map the time values from
                # [start_time,end_time+1] -> [0,1].
                cnorm = mcol.Normalize(vmin=0, vmax=1)

                # Turn these into an object that can be used to map time values to colors and
                # can be passed to plt.colorbar().
                cpick = cm.ScalarMappable(norm=cnorm, cmap=cm1)
                cpick.set_array([])
                cls = cpick.to_rgba(cls)
                plt.colorbar(cpick, ax=fig.add_subplot(111))


            nx.draw(g, pos=position, node_color=cls, ax=fig.add_subplot(111))

            fig.savefig(os.path.join(self.plotdir, fig_name)) 
開發者ID:priba,項目名稱:nmp_qc,代碼行數:35,代碼來源:Plotter.py

示例13: sort_sentences

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def sort_sentences(sentences, words, sim_func = get_similarity, pagerank_config = {'alpha': 0.85,}):
    """將句子按照關鍵程度從大到小排序

    Keyword arguments:
    sentences         --  列表,元素是句子
    words             --  二維列表,子列表和sentences中的句子對應,子列表由單詞組成
    sim_func          --  計算兩個句子的相似性,參數是兩個由單詞組成的列表
    pagerank_config   --  pagerank的設置
    """
    sorted_sentences = []
    _source = words
    sentences_num = len(_source)        
    graph = np.zeros((sentences_num, sentences_num))
    
    for x in xrange(sentences_num):
        for y in xrange(x, sentences_num):
            similarity = sim_func( _source[x], _source[y] )
            graph[x, y] = similarity
            graph[y, x] = similarity
            
    nx_graph = nx.from_numpy_matrix(graph)
    scores = nx.pagerank(nx_graph, **pagerank_config)              # this is a dict
    sorted_scores = sorted(scores.items(), key = lambda item: item[1], reverse=True)

    for index, score in sorted_scores:
        item = AttrDict(index=index, sentence=sentences[index], weight=score)
        sorted_sentences.append(item)

    return sorted_sentences 
開發者ID:letiantian,項目名稱:TextRank4ZH,代碼行數:31,代碼來源:util.py

示例14: betweenness_centrality

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def betweenness_centrality(adjacency, labels=None):
    def _betweeness_centrality(adjacency, labels):
        graph = nx.from_numpy_matrix(adjacency)

        labeling = nx.betweenness_centrality(graph, normalized=False)
        labeling = list(labeling.items())
        labeling = sorted(labeling, key=lambda n: n[1], reverse=True)

        return np.array([labels[n[0]] for n in labeling])

    labels = _labels_default(labels, adjacency)
    return tf.py_func(_betweeness_centrality, [adjacency, labels], tf.int32,
                      stateful=False, name='betweenness_centrality') 
開發者ID:rusty1s,項目名稱:graph-based-image-classification,代碼行數:15,代碼來源:labeling.py

示例15: _textrank

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_numpy_matrix [as 別名]
def _textrank(matrix):
    '''returns principal eigenvector
       of the adjacency matrix'''

    graph = nx.from_numpy_matrix(matrix)
    return nx.pagerank(graph) 
開發者ID:lekhakpadmanabh,項目名稱:Summarizer,代碼行數:8,代碼來源:core.py


注:本文中的networkx.from_numpy_matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。