本文整理匯總了Python中networkx.from_dict_of_lists方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.from_dict_of_lists方法的具體用法?Python networkx.from_dict_of_lists怎麽用?Python networkx.from_dict_of_lists使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.from_dict_of_lists方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def __init__(self, s):
if not glob(s['graph']):
#if not glob(s[file])
self.dct = save_or_load(s['file'], False)
#print(self.calc(self.dct))
self.graph = nx.from_dict_of_lists(self.dct)
save_or_load(s['graph'], True, self.graph)
else:
self.graph = save_or_load(s['graph'], False)
示例2: load_binary_data
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def load_binary_data(data_folder, dataset_str):
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("{}/ind.{}.{}".format(data_folder, dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("{}/ind.{}.test.index".format(data_folder, dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
StaticGraph.graph = nx.from_dict_of_lists(graph)
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)
cmd_args.feature_dim = features.shape[1]
cmd_args.num_class = labels.shape[1]
return preprocess_features(features), labels, idx_train, idx_val, idx_test
示例3: load_txt_data
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def load_txt_data(data_folder, dataset_str):
idx_train = list(np.loadtxt(data_folder + '/train_idx.txt', dtype=int))
idx_val = list(np.loadtxt(data_folder + '/val_idx.txt', dtype=int))
idx_test = list(np.loadtxt(data_folder + '/test_idx.txt', dtype=int))
labels = np.loadtxt(data_folder + '/label.txt')
with open(data_folder + '/meta.txt', 'r') as f:
num_nodes, cmd_args.num_class, cmd_args.feature_dim = [int(w) for w in f.readline().strip().split()]
graph = load_raw_graph(data_folder, dataset_str)
assert len(graph) == num_nodes
StaticGraph.graph = nx.from_dict_of_lists(graph)
row_ptr = []
col_idx = []
vals = []
with open(data_folder + '/features.txt', 'r') as f:
nnz = 0
for row in f:
row = row.strip().split()
row_ptr.append(nnz)
for i in range(1, len(row)):
w = row[i].split(':')
col_idx.append(int(w[0]))
vals.append(float(w[1]))
nnz += int(row[0])
row_ptr.append(nnz)
assert len(col_idx) == len(vals) and len(vals) == nnz and len(row_ptr) == num_nodes + 1
features = sp.csr_matrix((vals, col_idx, row_ptr), shape=(num_nodes, cmd_args.feature_dim))
return preprocess_features(features), labels, idx_train, idx_val, idx_test
示例4: partition_h5_file
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def partition_h5_file(h5_filename, gene_list=None, num_neighbors=10, num_trees=100,
louvain_level=-1,genome=None):
"""
Reads a CellRanger h5 file and partitions it by clustering on the k-nearest neighbor graph
Keyword arguments:
gene_list - restricts the analysis to the specified list of gene symbols. Default is to not restrict
num_neighbors - the number of nearest neighbors to compute for each cell
num_trees - the number of trees used in the random forest that approximates the nearest neighbor calculation
louvain_level - the level of the Louvain clustering dendrogram to cut at. Level 0 is the lowest (most granular)
level, and higher levels get less granular. The highest level is considered the "best" set
of clusters, but the number of levels is not known a priori. Hence, negative values will
count down from the highest level, so -1 will always be the "best" clustering, regardless of
the actual number of levels in the dendrogram
Return Result: A dictionary, where the keys are partition ids and the values are the CellCollection for that partition
"""
if '.h5' in h5_filename:
collection = CellCollection.from_cellranger_h5(h5_filename)
data_type = 'h5'
elif 'txt' in h5_filename:
try:
collection = CellCollection.from_tsvfile_alt(h5_filename,genome,gene_list=gene_list)
except:
collection = CellCollection.from_tsvfile(h5_filename,genome)
data_type = 'txt'
else:
collection = CellCollection.from_cellranger_mtx(h5_filename,genome)
data_type = 'mtx'
if gene_list != None:
collection.filter_genes_by_symbol(gene_list,data_type)
neighbor_dict = nearest_neighbors(collection, num_neighbors=num_neighbors, n_trees=num_trees)
cluster_definition = identify_clusters(networkx.from_dict_of_lists(neighbor_dict), louvain_level=louvain_level)
return collection.partition(cluster_definition)
示例5: from_dict_of_lists
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def from_dict_of_lists(d,create_using=None):
"""Return a graph from a dictionary of lists.
Parameters
----------
d : dictionary of lists
A dictionary of lists adjacency representation.
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.
Examples
--------
>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)
or
>>> G=nx.Graph(dol) # use Graph constructor
"""
G=_prep_create_using(create_using)
G.add_nodes_from(d)
if G.is_multigraph() and not G.is_directed():
# a dict_of_lists can't show multiedges. BUT for undirected graphs,
# each edge shows up twice in the dict_of_lists.
# So we need to treat this case separately.
seen={}
for node,nbrlist in d.items():
for nbr in nbrlist:
if nbr not in seen:
G.add_edge(node,nbr)
seen[node]=1 # don't allow reverse edge to show up
else:
G.add_edges_from( ((node,nbr) for node,nbrlist in d.items()
for nbr in nbrlist) )
return G
示例6: from_dict_of_lists
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def from_dict_of_lists(d, create_using=None):
"""Returns a graph from a dictionary of lists.
Parameters
----------
d : dictionary of lists
A dictionary of lists adjacency representation.
create_using : NetworkX graph constructor, optional (default=nx.Graph)
Graph type to create. If graph instance, then cleared before populated.
Examples
--------
>>> dol = {0: [1]} # single edge (0,1)
>>> G = nx.from_dict_of_lists(dol)
or
>>> G = nx.Graph(dol) # use Graph constructor
"""
G = nx.empty_graph(0, create_using)
G.add_nodes_from(d)
if G.is_multigraph() and not G.is_directed():
# a dict_of_lists can't show multiedges. BUT for undirected graphs,
# each edge shows up twice in the dict_of_lists.
# So we need to treat this case separately.
seen = {}
for node, nbrlist in d.items():
for nbr in nbrlist:
if nbr not in seen:
G.add_edge(node, nbr)
seen[node] = 1 # don't allow reverse edge to show up
else:
G.add_edges_from(((node, nbr) for node, nbrlist in d.items()
for nbr in nbrlist))
return G
示例7: from_dict_of_lists
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def from_dict_of_lists(d, create_using=None):
"""Return a graph from a dictionary of lists.
Parameters
----------
d : dictionary of lists
A dictionary of lists adjacency representation.
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.
Examples
--------
>>> dol = {0: [1]} # single edge (0,1)
>>> G = nx.from_dict_of_lists(dol)
or
>>> G = nx.Graph(dol) # use Graph constructor
"""
G = _prep_create_using(create_using)
G.add_nodes_from(d)
if G.is_multigraph() and not G.is_directed():
# a dict_of_lists can't show multiedges. BUT for undirected graphs,
# each edge shows up twice in the dict_of_lists.
# So we need to treat this case separately.
seen = {}
for node, nbrlist in d.items():
for nbr in nbrlist:
if nbr not in seen:
G.add_edge(node, nbr)
seen[node] = 1 # don't allow reverse edge to show up
else:
G.add_edges_from(((node, nbr) for node, nbrlist in d.items()
for nbr in nbrlist))
return G
示例8: Graph_load
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def Graph_load(dataset = 'cora'):
'''
Load a single graph dataset
:param dataset: dataset name
:return:
'''
names = ['x', 'tx', 'allx', 'graph']
objects = []
for i in range(len(names)):
load = pkl.load(open("dataset/ind.{}.{}".format(dataset, names[i]), 'rb'), encoding='latin1')
# print('loaded')
objects.append(load)
# print(load)
x, tx, allx, graph = tuple(objects)
test_idx_reorder = parse_index_file("dataset/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
G = nx.from_dict_of_lists(graph)
adj = nx.adjacency_matrix(G)
return adj, features, G
######### code test ########
# adj, features,G = Graph_load()
# print(adj)
# print(G.number_of_nodes(), G.number_of_edges())
# _,_,G = Graph_load(dataset='citeseer')
# G = max(nx.connected_component_subgraphs(G), key=len)
# G = nx.convert_node_labels_to_integers(G)
#
# count = 0
# max_node = 0
# for i in range(G.number_of_nodes()):
# G_ego = nx.ego_graph(G, i, radius=3)
# # draw_graph(G_ego,prefix='test'+str(i))
# m = G_ego.number_of_nodes()
# if m>max_node:
# max_node = m
# if m>=50:
# print(i, G_ego.number_of_nodes(), G_ego.number_of_edges())
# count += 1
# print('count', count)
# print('max_node', max_node)
示例9: filtration
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def filtration(self, filter_indices=None, toArray=False, remap=False):
"""
Generate a local adjacency list, constrained to a subset of vertices on
the surface. For each vertex in 'vertices', retain neighbors
only if they also exist in 'vertices'.
Parameters:
- - - - -
fitler_indices : array
indices to include in sub-graph. If none, returns original graph.
to_array : bool
return adjacency matrix of filter_indices
remap : bool
remap indices to 0-len(filter_indices)
Returns:
- - - -
G : array / dictionary
down-sampled adjacency list / matrix
"""
assert hasattr(self, 'adj')
if not np.any(filter_indices):
G = self.adj.copy()
else:
filter_indices = np.sort(filter_indices)
G = {}.fromkeys(filter_indices)
for v in filter_indices:
G[v] = list(set(self.adj[v]).intersection(set(filter_indices)))
ind2sort = dict(zip(
filter_indices,
np.arange(len(filter_indices))))
if remap:
remapped = {
ind2sort[fi]: [ind2sort[nb] for nb in G[fi]]
for fi in filter_indices}
G = remapped
if toArray:
G = nx.from_dict_of_lists(G)
nodes = G.nodes()
nodes = np.argsort(nodes)
G = nx.to_numpy_array(G)
G = G[nodes, :][:, nodes]
return G