當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.from_dict_of_lists方法代碼示例

本文整理匯總了Python中networkx.from_dict_of_lists方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.from_dict_of_lists方法的具體用法?Python networkx.from_dict_of_lists怎麽用?Python networkx.from_dict_of_lists使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.from_dict_of_lists方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def __init__(self, s):
		if not glob(s['graph']):
			#if not glob(s[file])
			self.dct = save_or_load(s['file'], False)

			#print(self.calc(self.dct))

			self.graph = nx.from_dict_of_lists(self.dct)


			save_or_load(s['graph'], True, self.graph)
		else:
			self.graph = save_or_load(s['graph'], False) 
開發者ID:stleon,項目名稱:vk_friends,代碼行數:15,代碼來源:graph.py

示例2: load_binary_data

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def load_binary_data(data_folder, dataset_str):
    """Load data."""
    names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
    objects = []
    for i in range(len(names)):
        with open("{}/ind.{}.{}".format(data_folder, dataset_str, names[i]), 'rb') as f:
            if sys.version_info > (3, 0):
                objects.append(pkl.load(f, encoding='latin1'))
            else:
                objects.append(pkl.load(f))

    x, y, tx, ty, allx, ally, graph = tuple(objects)
    test_idx_reorder = parse_index_file("{}/ind.{}.test.index".format(data_folder, dataset_str))
    test_idx_range = np.sort(test_idx_reorder)

    if dataset_str == 'citeseer':
        # Fix citeseer dataset (there are some isolated nodes in the graph)
        # Find isolated nodes, add them as zero-vecs into the right position
        test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
        tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
        tx_extended[test_idx_range-min(test_idx_range), :] = tx
        tx = tx_extended
        ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
        ty_extended[test_idx_range-min(test_idx_range), :] = ty
        ty = ty_extended

    features = sp.vstack((allx, tx)).tolil()
    features[test_idx_reorder, :] = features[test_idx_range, :]

    StaticGraph.graph = nx.from_dict_of_lists(graph)

    labels = np.vstack((ally, ty))
    labels[test_idx_reorder, :] = labels[test_idx_range, :]

    idx_test = test_idx_range.tolist()
    idx_train = range(len(y))
    idx_val = range(len(y), len(y)+500)

    cmd_args.feature_dim = features.shape[1]
    cmd_args.num_class = labels.shape[1]
    return preprocess_features(features), labels, idx_train, idx_val, idx_test 
開發者ID:Hanjun-Dai,項目名稱:graph_adversarial_attack,代碼行數:43,代碼來源:node_utils.py

示例3: load_txt_data

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def load_txt_data(data_folder, dataset_str):
    idx_train = list(np.loadtxt(data_folder + '/train_idx.txt', dtype=int))
    idx_val = list(np.loadtxt(data_folder + '/val_idx.txt', dtype=int))
    idx_test = list(np.loadtxt(data_folder + '/test_idx.txt', dtype=int))
    labels = np.loadtxt(data_folder + '/label.txt')
    
    with open(data_folder + '/meta.txt', 'r') as f:
        num_nodes, cmd_args.num_class, cmd_args.feature_dim = [int(w) for w in f.readline().strip().split()]

    graph = load_raw_graph(data_folder, dataset_str)
    assert len(graph) == num_nodes
    StaticGraph.graph = nx.from_dict_of_lists(graph)
    
    row_ptr = []
    col_idx = []
    vals = []
    with open(data_folder + '/features.txt', 'r') as f:
        nnz = 0
        for row in f:
            row = row.strip().split()
            row_ptr.append(nnz)            
            for i in range(1, len(row)):
                w = row[i].split(':')
                col_idx.append(int(w[0]))
                vals.append(float(w[1]))
            nnz += int(row[0])
        row_ptr.append(nnz)
    assert len(col_idx) == len(vals) and len(vals) == nnz and len(row_ptr) == num_nodes + 1

    features = sp.csr_matrix((vals, col_idx, row_ptr), shape=(num_nodes, cmd_args.feature_dim))
    
    return preprocess_features(features), labels, idx_train, idx_val, idx_test 
開發者ID:Hanjun-Dai,項目名稱:graph_adversarial_attack,代碼行數:34,代碼來源:node_utils.py

示例4: partition_h5_file

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def partition_h5_file(h5_filename, gene_list=None, num_neighbors=10, num_trees=100,
                    louvain_level=-1,genome=None):
    """
    Reads a CellRanger h5 file and partitions it by clustering on the k-nearest neighbor graph

    Keyword arguments:
    gene_list - restricts the analysis to the specified list of gene symbols.  Default is to not restrict
    num_neighbors - the number of nearest neighbors to compute for each cell
    num_trees - the number of trees used in the random forest that approximates the nearest neighbor calculation
    louvain_level - the level of the Louvain clustering dendrogram to cut at.  Level 0 is the lowest (most granular) 
                    level, and higher levels get less granular.  The highest level is considered the "best" set
                    of clusters, but the number of levels is not known a priori.  Hence, negative values will
                    count down from the highest level, so -1 will always be the "best" clustering, regardless of
                    the actual number of levels in the dendrogram

    Return Result: A dictionary, where the keys are partition ids and the values are the CellCollection for that partition
    """
    if '.h5' in h5_filename:
        collection = CellCollection.from_cellranger_h5(h5_filename)
        data_type = 'h5'
    elif 'txt' in h5_filename:
        try:
            collection = CellCollection.from_tsvfile_alt(h5_filename,genome,gene_list=gene_list)
        except:
            collection = CellCollection.from_tsvfile(h5_filename,genome)
        data_type = 'txt'
    else:
        collection = CellCollection.from_cellranger_mtx(h5_filename,genome)
        data_type = 'mtx'
    if gene_list != None:
        collection.filter_genes_by_symbol(gene_list,data_type)
    neighbor_dict = nearest_neighbors(collection, num_neighbors=num_neighbors, n_trees=num_trees)
    cluster_definition = identify_clusters(networkx.from_dict_of_lists(neighbor_dict), louvain_level=louvain_level)
    return collection.partition(cluster_definition) 
開發者ID:nsalomonis,項目名稱:altanalyze,代碼行數:36,代碼來源:cluster_corr.py

示例5: from_dict_of_lists

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def from_dict_of_lists(d,create_using=None):
    """Return a graph from a dictionary of lists.

    Parameters
    ----------
    d : dictionary of lists
      A dictionary of lists adjacency representation.

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    Examples
    --------
    >>> dol= {0:[1]} # single edge (0,1)
    >>> G=nx.from_dict_of_lists(dol)

    or
    >>> G=nx.Graph(dol) # use Graph constructor

    """
    G=_prep_create_using(create_using)
    G.add_nodes_from(d)
    if G.is_multigraph() and not G.is_directed():
        # a dict_of_lists can't show multiedges.  BUT for undirected graphs,
        # each edge shows up twice in the dict_of_lists.
        # So we need to treat this case separately.
        seen={}
        for node,nbrlist in d.items():
            for nbr in nbrlist:
                if nbr not in seen:
                    G.add_edge(node,nbr)
            seen[node]=1  # don't allow reverse edge to show up
    else:
        G.add_edges_from( ((node,nbr) for node,nbrlist in d.items()
                           for nbr in nbrlist) )
    return G 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:38,代碼來源:convert.py

示例6: from_dict_of_lists

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def from_dict_of_lists(d, create_using=None):
    """Returns a graph from a dictionary of lists.

    Parameters
    ----------
    d : dictionary of lists
      A dictionary of lists adjacency representation.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    Examples
    --------
    >>> dol = {0: [1]} # single edge (0,1)
    >>> G = nx.from_dict_of_lists(dol)

    or

    >>> G = nx.Graph(dol) # use Graph constructor

    """
    G = nx.empty_graph(0, create_using)
    G.add_nodes_from(d)
    if G.is_multigraph() and not G.is_directed():
        # a dict_of_lists can't show multiedges.  BUT for undirected graphs,
        # each edge shows up twice in the dict_of_lists.
        # So we need to treat this case separately.
        seen = {}
        for node, nbrlist in d.items():
            for nbr in nbrlist:
                if nbr not in seen:
                    G.add_edge(node, nbr)
            seen[node] = 1  # don't allow reverse edge to show up
    else:
        G.add_edges_from(((node, nbr) for node, nbrlist in d.items()
                          for nbr in nbrlist))
    return G 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:39,代碼來源:convert.py

示例7: from_dict_of_lists

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def from_dict_of_lists(d, create_using=None):
    """Return a graph from a dictionary of lists.

    Parameters
    ----------
    d : dictionary of lists
      A dictionary of lists adjacency representation.

    create_using : NetworkX graph
       Use specified graph for result.  Otherwise a new graph is created.

    Examples
    --------
    >>> dol = {0: [1]} # single edge (0,1)
    >>> G = nx.from_dict_of_lists(dol)

    or

    >>> G = nx.Graph(dol) # use Graph constructor

    """
    G = _prep_create_using(create_using)
    G.add_nodes_from(d)
    if G.is_multigraph() and not G.is_directed():
        # a dict_of_lists can't show multiedges.  BUT for undirected graphs,
        # each edge shows up twice in the dict_of_lists.
        # So we need to treat this case separately.
        seen = {}
        for node, nbrlist in d.items():
            for nbr in nbrlist:
                if nbr not in seen:
                    G.add_edge(node, nbr)
            seen[node] = 1  # don't allow reverse edge to show up
    else:
        G.add_edges_from(((node, nbr) for node, nbrlist in d.items()
                          for nbr in nbrlist))
    return G 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:39,代碼來源:convert.py

示例8: Graph_load

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def Graph_load(dataset = 'cora'):
    '''
    Load a single graph dataset
    :param dataset: dataset name
    :return:
    '''
    names = ['x', 'tx', 'allx', 'graph']
    objects = []
    for i in range(len(names)):
        load = pkl.load(open("dataset/ind.{}.{}".format(dataset, names[i]), 'rb'), encoding='latin1')
        # print('loaded')
        objects.append(load)
        # print(load)
    x, tx, allx, graph = tuple(objects)
    test_idx_reorder = parse_index_file("dataset/ind.{}.test.index".format(dataset))
    test_idx_range = np.sort(test_idx_reorder)

    if dataset == 'citeseer':
        # Fix citeseer dataset (there are some isolated nodes in the graph)
        # Find isolated nodes, add them as zero-vecs into the right position
        test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1)
        tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
        tx_extended[test_idx_range - min(test_idx_range), :] = tx
        tx = tx_extended

    features = sp.vstack((allx, tx)).tolil()
    features[test_idx_reorder, :] = features[test_idx_range, :]
    G = nx.from_dict_of_lists(graph)
    adj = nx.adjacency_matrix(G)
    return adj, features, G


######### code test ########
# adj, features,G = Graph_load()
# print(adj)
# print(G.number_of_nodes(), G.number_of_edges())

# _,_,G = Graph_load(dataset='citeseer')
# G = max(nx.connected_component_subgraphs(G), key=len)
# G = nx.convert_node_labels_to_integers(G)
#
# count = 0
# max_node = 0
# for i in range(G.number_of_nodes()):
#     G_ego = nx.ego_graph(G, i, radius=3)
#     # draw_graph(G_ego,prefix='test'+str(i))
#     m = G_ego.number_of_nodes()
#     if m>max_node:
#         max_node = m
#     if m>=50:
#         print(i, G_ego.number_of_nodes(), G_ego.number_of_edges())
#         count += 1
# print('count', count)
# print('max_node', max_node) 
開發者ID:JiaxuanYou,項目名稱:graph-generation,代碼行數:56,代碼來源:data.py

示例9: filtration

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import from_dict_of_lists [as 別名]
def filtration(self, filter_indices=None, toArray=False, remap=False):
        """
        Generate a local adjacency list, constrained to a subset of vertices on
        the surface.  For each vertex in 'vertices', retain neighbors
        only if they also exist in 'vertices'.

        Parameters:
        - - - - -
        fitler_indices : array
            indices to include in sub-graph.  If none, returns original graph.
        to_array : bool
            return adjacency matrix of filter_indices
        remap : bool
            remap indices to 0-len(filter_indices)
        Returns:
        - - - -
        G : array / dictionary
            down-sampled adjacency list / matrix
        """

        assert hasattr(self, 'adj')

        if not np.any(filter_indices):
            G = self.adj.copy()

        else:
            filter_indices = np.sort(filter_indices)

            G = {}.fromkeys(filter_indices)

            for v in filter_indices:
                G[v] = list(set(self.adj[v]).intersection(set(filter_indices)))

            ind2sort = dict(zip(
                filter_indices,
                np.arange(len(filter_indices))))

        if remap:
            remapped = {
                ind2sort[fi]: [ind2sort[nb] for nb in G[fi]]
                for fi in filter_indices}

            G = remapped

        if toArray:
            G = nx.from_dict_of_lists(G)
            nodes = G.nodes()
            nodes = np.argsort(nodes)
            G = nx.to_numpy_array(G)
            G = G[nodes, :][:, nodes]

        return G 
開發者ID:miykael,項目名稱:parcellation_fragmenter,代碼行數:54,代碼來源:adjacency.py


注:本文中的networkx.from_dict_of_lists方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。