本文整理匯總了Python中networkx.erdos_renyi_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.erdos_renyi_graph方法的具體用法?Python networkx.erdos_renyi_graph怎麽用?Python networkx.erdos_renyi_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.erdos_renyi_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_khop_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_khop_graph():
N = 20
feat = F.randn((N, 5))
def _test(g):
for k in range(4):
g_k = dgl.khop_graph(g, k)
# use original graph to do message passing for k times.
g.ndata['h'] = feat
for _ in range(k):
g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
h_0 = g.ndata.pop('h')
# use k-hop graph to do message passing for one time.
g_k.ndata['h'] = feat
g_k.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
h_1 = g_k.ndata.pop('h')
assert F.allclose(h_0, h_1, rtol=1e-3, atol=1e-3)
# Test for random undirected graphs
g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
_test(g)
# Test for random directed graphs
g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3, directed=True))
_test(g)
示例2: test_laplacian_lambda_max
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_laplacian_lambda_max():
N = 20
eps = 1e-6
# test DGLGraph
g = dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
l_max = dgl.laplacian_lambda_max(g)
assert (l_max[0] < 2 + eps)
# test batched DGLGraph
N_arr = [20, 30, 10, 12]
bg = dgl.batch([
dgl.DGLGraph(nx.erdos_renyi_graph(N, 0.3))
for N in N_arr
])
l_max_arr = dgl.laplacian_lambda_max(bg)
assert len(l_max_arr) == len(N_arr)
for l_max in l_max_arr:
assert l_max < 2 + eps
示例3: test_gat_conv
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_gat_conv():
ctx = F.ctx()
g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
gat = nn.GATConv(10, 20, 5) # n_heads = 5
gat.initialize(ctx=ctx)
print(gat)
# test#1: basic
feat = F.randn((20, 10))
h = gat(g, feat)
assert h.shape == (20, 5, 20)
# test#2: bipartite
g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
gat = nn.GATConv((5, 10), 2, 4)
gat.initialize(ctx=ctx)
feat = (F.randn((100, 5)), F.randn((200, 10)))
h = gat(g, feat)
assert h.shape == (200, 4, 2)
示例4: test_gin_conv
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_gin_conv():
g = dgl.DGLGraph(nx.erdos_renyi_graph(20, 0.3))
ctx = F.ctx()
gin_conv = nn.GINConv(lambda x: x, 'mean', 0.1)
gin_conv.initialize(ctx=ctx)
print(gin_conv)
# test #1: basic
feat = F.randn((g.number_of_nodes(), 5))
h = gin_conv(g, feat)
assert h.shape == (20, 5)
# test #2: bipartite
g = dgl.bipartite(sp.sparse.random(100, 200, density=0.1))
feat = (F.randn((100, 5)), F.randn((200, 5)))
h = gin_conv(g, feat)
return h.shape == (20, 5)
示例5: seed
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def seed(value: Optional[int]) -> None:
"""Seed for random number generators.
Wrapper function for `numpy.random.seed <https://docs.scipy.org/doc/numpy//reference/generated
/numpy.random.seed.html>`_ to seed all NumPy-based random number generators. This allows for
repeatable sampling.
**Example usage:**
>>> g = nx.erdos_renyi_graph(5, 0.7)
>>> a = nx.to_numpy_array(g)
>>> seed(1967)
>>> sample(a, 3, 4)
[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 0, 0, 0]]
>>> seed(1967)
>>> sample(a, 3, 4)
[[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 0, 1, 0, 1], [0, 0, 0, 0, 0]]
Args:
value (int): random seed
"""
np.random.seed(value)
示例6: test_visualize_dynamic
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_visualize_dynamic(self):
dg = dn.DynGraph()
for t in past.builtins.xrange(0, 4):
g = nx.erdos_renyi_graph(200, 0.05)
dg.add_interactions_from(g.edges(), t)
model = dyn.DynSIModel(dg)
config = mc.Configuration()
config.add_model_parameter('beta', 0.1)
config.add_model_parameter("fraction_infected", 0.1)
model.set_initial_status(config)
iterations = model.execute_snapshots()
trends = model.build_trends(iterations)
# Visualization
viz = DiffusionPrevalence(model, trends)
viz.plot("prevd.pdf")
os.remove("prevd.pdf")
示例7: test_DynSI
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_DynSI(self):
dg = dn.DynGraph()
for t in past.builtins.xrange(0, 3):
g = nx.erdos_renyi_graph(200, 0.05)
dg.add_interactions_from(g.edges(), t)
model = dyn.DynSIModel(dg)
config = mc.Configuration()
config.add_model_parameter('beta', 0.1)
config.add_model_parameter("fraction_infected", 0.1)
model.set_initial_status(config)
iterations = model.execute_snapshots()
self.assertEqual(len(iterations), 3)
iterations = model.execute_iterations()
trends = model.build_trends(iterations)
self.assertEqual(len(trends[0]['trends']['status_delta'][1]),
len([x for x in dg.stream_interactions() if x[2] == "+"]))
示例8: test_DynSIS
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_DynSIS(self):
dg = dn.DynGraph()
for t in past.builtins.xrange(0, 3):
g = nx.erdos_renyi_graph(200, 0.05)
dg.add_interactions_from(g.edges(), t)
model = dyn.DynSISModel(dg)
config = mc.Configuration()
config.add_model_parameter('beta', 0.1)
config.add_model_parameter('lambda', 0.1)
config.add_model_parameter("fraction_infected", 0.1)
model.set_initial_status(config)
iterations = model.execute_snapshots()
self.assertEqual(len(iterations), 3)
iterations = model.execute_iterations()
trends = model.build_trends(iterations)
self.assertEqual(len(trends[0]['trends']['status_delta'][1]),
len([x for x in dg.stream_interactions() if x[2] == "+"]))
示例9: test_DynSIR
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_DynSIR(self):
dg = dn.DynGraph()
for t in past.builtins.xrange(0, 3):
g = nx.erdos_renyi_graph(200, 0.05)
dg.add_interactions_from(g.edges(), t)
model = dyn.DynSIRModel(dg)
config = mc.Configuration()
config.add_model_parameter('beta', 0.1)
config.add_model_parameter('gamma', 0.1)
config.add_model_parameter("fraction_infected", 0.1)
model.set_initial_status(config)
iterations = model.execute_snapshots()
self.assertEqual(len(iterations), 3)
iterations = model.execute_iterations()
trends = model.build_trends(iterations)
self.assertEqual(len(trends[0]['trends']['status_delta'][1]),
len([x for x in dg.stream_interactions() if x[2] == "+"]))
示例10: test_DynProfile
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_DynProfile(self):
dg = dn.DynGraph()
for t in past.builtins.xrange(0, 3):
g = nx.erdos_renyi_graph(200, 0.05)
dg.add_interactions_from(g.edges(), t)
model = dyn.DynProfileModel(dg)
config = mc.Configuration()
config.add_model_parameter("fraction_infected", 0.1)
config.add_model_parameter("blocked", 0.1)
config.add_model_parameter("adopter_rate", 0.001)
profile = 0.1
for i in g.nodes():
config.add_node_configuration("profile", i, profile)
model.set_initial_status(config)
model.set_initial_status(config)
iterations = model.execute_snapshots()
self.assertEqual(len(iterations), 3)
示例11: test_DynProfileThreshold
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_DynProfileThreshold(self):
dg = dn.DynGraph()
for t in past.builtins.xrange(0, 3):
g = nx.erdos_renyi_graph(200, 0.05)
dg.add_interactions_from(g.edges(), t)
model = dyn.DynProfileThresholdModel(dg)
config = mc.Configuration()
config.add_model_parameter("fraction_infected", 0.1)
config.add_model_parameter("blocked", 0.1)
config.add_model_parameter("adopter_rate", 0.001)
threshold = 0.2
profile = 0.1
for i in g.nodes():
config.add_node_configuration("threshold", i, threshold)
config.add_node_configuration("profile", i, profile)
model.set_initial_status(config)
model.set_initial_status(config)
iterations = model.execute_snapshots()
self.assertEqual(len(iterations), 3)
示例12: test_multi
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_multi(self):
# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)
# Model selection
model1 = epd.SIRModel(g)
# Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('gamma', 0.01)
config.add_model_parameter("fraction_infected", 0.05)
model1.set_initial_status(config)
# Simulation multiple execution
trends = multi_runs(model1, execution_number=10, iteration_number=100, infection_sets=None, nprocesses=4)
self.assertIsNotNone(trends)
示例13: test_multi_initial_set
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_multi_initial_set(self):
# Network topology
g = nx.erdos_renyi_graph(1000, 0.1)
# Model selection
model1 = epd.SIRModel(g)
# Model Configuration
config = mc.Configuration()
config.add_model_parameter('beta', 0.001)
config.add_model_parameter('gamma', 0.01)
model1.set_initial_status(config)
# Simulation multiple execution
infection_sets = [(1, 2, 3, 4, 5), (3, 23, 22, 54, 2), (98, 2, 12, 26, 3), (4, 6, 9)]
trends = multi_runs(model1, execution_number=4, iteration_number=100, infection_sets=infection_sets,
nprocesses=4)
self.assertIsNotNone(trends)
示例14: test_node_stochastic
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_node_stochastic(self):
g = nx.erdos_renyi_graph(1000, 0.1)
model = gc.CompositeModel(g)
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")
c1 = cpm.NodeStochastic(0.02, "Infected")
c2 = cpm.NodeStochastic(0.01)
c3 = cpm.NodeStochastic(0.5)
model.add_rule("Susceptible", "Infected", c1)
model.add_rule("Infected", "Removed", c2)
model.add_rule("Infected", "Susceptible", c3)
config = mc.Configuration()
config.add_model_parameter('fraction_infected', 0.1)
model.set_initial_status(config)
iterations = model.iteration_bunch(100)
self.assertEqual(len(iterations), 100)
示例15: test_conditional_composition
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import erdos_renyi_graph [as 別名]
def test_conditional_composition(self):
g = nx.erdos_renyi_graph(1000, 0.1)
model = gc.CompositeModel(g)
model.add_status("Susceptible")
model.add_status("Infected")
model.add_status("Removed")
# conditional composition
c1 = cpm.NodeStochastic(0.5)
c2 = cpm.NodeStochastic(0.2)
c3 = cpm.NodeStochastic(0.1)
cc = cpm.ConditionalComposition(c1, c2, c3)
model.add_rule("Susceptible", "Infected", cc)
config = mc.Configuration()
config.add_model_parameter('fraction_infected', 0.1)
model.set_initial_status(config)
iterations = model.iteration_bunch(100)
self.assertEqual(len(iterations), 100)