本文整理匯總了Python中networkx.draw_circular方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.draw_circular方法的具體用法?Python networkx.draw_circular怎麽用?Python networkx.draw_circular使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.draw_circular方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_draw
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def test_draw(self):
try:
N=self.G
nx.draw_spring(N)
plt.savefig("test.ps")
nx.draw_random(N)
plt.savefig("test.ps")
nx.draw_circular(N)
plt.savefig("test.ps")
nx.draw_spectral(N)
plt.savefig("test.ps")
nx.draw_spring(N.to_directed())
plt.savefig("test.ps")
finally:
try:
os.unlink('test.ps')
except OSError:
pass
示例2: test_draw
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def test_draw(self):
try:
functions = [nx.draw_circular,
nx.draw_kamada_kawai,
nx.draw_planar,
nx.draw_random,
nx.draw_spectral,
nx.draw_spring,
nx.draw_shell]
options = [{
'node_color': 'black',
'node_size': 100,
'width': 3,
}]
for function, option in itertools.product(functions, options):
function(self.G, **option)
plt.savefig('test.ps')
finally:
try:
os.unlink('test.ps')
except OSError:
pass
示例3: test_draw
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def test_draw(self):
try:
functions = [nx.draw_circular,
nx.draw_kamada_kawai,
nx.draw_random,
nx.draw_spectral,
nx.draw_spring,
nx.draw_shell]
options = [{
'node_color': 'black',
'node_size': 100,
'width': 3,
}]
for function, option in itertools.product(functions, options):
function(self.G, **option)
plt.savefig('test.ps')
finally:
try:
os.unlink('test.ps')
except OSError:
pass
示例4: display_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def display_graph(variables, relations):
"""
Display the variables and relation as a graph, using networkx and
matplotlib.
Parameters
----------
variables: list
a list of Variable objets
relations: list
a list of Relation objects
"""
graph = as_networkx_graph(variables, relations)
# Do not crash if matplotlib is not installed
try:
import matplotlib.pyplot as plt
nx.draw_networkx(graph, with_labels=True)
# nx.draw_random(graph)
# nx.draw_circular(graph)
# nx.draw_spectral(graph)
plt.show()
except ImportError:
print("ERROR: cannot display graph, matplotlib is not installed")
示例5: update_net
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def update_net(self, node, edge, direction):
plt.figure(1)
# self.lg.info("Update net", node, edge, direction)
if node:
self.net_labels[node] = node
if node in self.Type and self.Type[node] == "MP":
if direction == "IN":
self.G.add_node(node, behaviour='malicious')
else:
self.lg.info("simulator: {} removed from graph (MP)".format(node))
self.G.remove_node(node)
del self.net_labels[node]
elif node in self.Type and self.Type[node] == "M":
if direction == "IN":
self.G.add_node(node, behaviour='monitor')
else:
self.G.remove_node(node)
del self.net_labels[node]
else:
if direction == "IN":
self.G.add_node(node, behaviour='peer')
else:
self.G.remove_node(node)
del self.net_labels[node]
else:
if edge[0] in self.G.nodes() and edge[1] in self.G.nodes():
if direction == "IN":
self.G.add_edge(*edge, color='#000000')
else:
self.G.add_edge(*edge, color='r')
self.net_figure.clf()
edges = self.G.edges()
edge_color = [self.G[u][v]['color'] for u, v in edges]
node_color = [self.color_map[self.G.node[node]['behaviour']] for node in self.G]
self.net_figure.suptitle("Overlay Network of the Team", size=16)
nx.draw_circular(self.G, node_color=node_color, node_size=400, edge_color=edge_color, labels=self.net_labels,
font_size=10, font_weight='bold')
self.net_figure.canvas.draw()
示例6: _plot_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def _plot_graph(graph, axis, weights=None, display_edge_labels=True):
"""Plot graph using networkx."""
pos = nx.circular_layout(graph)
nx.draw_circular(graph, with_labels=True, node_size=600, alpha=1.0,
ax=axis, node_color='Gainsboro', hold=True, font_size=14,
font_weight='bold')
if display_edge_labels:
edge_labels = nx.get_edge_attributes(graph, weights)
nx.draw_networkx_edge_labels(graph, pos, edge_labels=edge_labels,
font_size=13) # font_weight='bold'
示例7: draw_graph_to_adjacency_matrix
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def draw_graph_to_adjacency_matrix(graph):
"""
Draws the graph in circular format for easier debugging
:param graph:
:return:
"""
dag = nx.DiGraph(graph)
nx.draw_circular(dag, with_labels=True)
示例8: plotGraph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def plotGraph(self, colorArrangement):
"""
Plots the graph with the nodes colored according to the given color arrangement
:param colorArrangement: a list of integers representing the suggested color arrangement fpo the nodes,
one color per node in the graph
"""
if len(colorArrangement) != self.__len__():
raise ValueError("size of color list should be equal to ", self.__len__())
# create a list of the unique colors in the arrangement:
colorList = list(set(colorArrangement))
# create the actual colors for the integers in the color list:
colors = plt.cm.rainbow(np.linspace(0, 1, len(colorList)))
# iterate over the nodes, and give each one of them its corresponding color:
colorMap = []
for i in range(self.__len__()):
color = colors[colorList.index(colorArrangement[i])]
colorMap.append(color)
# plot the nodes with their labels and matching colors:
nx.draw_kamada_kawai(self.graph, node_color=colorMap, with_labels=True)
#nx.draw_circular(self.graph, node_color=color_map, with_labels=True)
return plt
# testing the class:
示例9: display_bipartite_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def display_bipartite_graph(variables, relations):
"""
Display the variables and relation as a graph, using networkx and
matplotlib.
Parameters
----------
variables: list
a list of Variable objets
relations: list
a list of Relation objects
"""
graph = as_networkx_bipartite_graph(variables, relations)
# Do not crash if matplotlib is not installed
try:
import matplotlib.pyplot as plt
pos = nx.drawing.spring_layout(graph)
variables = set(n for n, d in graph.nodes(data=True) if d["bipartite"] == 0)
factors = set(graph) - variables
nx.draw_networkx_nodes(
graph,
pos=pos,
with_labels=True,
nodelist=variables,
node_shape="o",
node_color="b",
label="variables",
alpha=0.5,
)
nx.draw_networkx_nodes(
graph,
pos=pos,
with_labels=True,
nodelist=factors,
node_shape="s",
node_color="r",
label="factors",
alpha=0.5,
)
nx.draw_networkx_labels(graph, pos=pos)
nx.draw_networkx_edges(graph, pos=pos)
# nx.draw_random(graph)
# nx.draw_circular(graph)
# nx.draw_spectral(graph)
plt.show()
except ImportError:
print("ERROR: cannot display graph, matplotlib is not installed")
示例10: rollout_and_examine
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import draw_circular [as 別名]
def rollout_and_examine(self, model, num_samples):
assert not model.training, 'You need to call model.eval().'
num_total_size = 0
num_valid_size = 0
num_cycle = 0
num_valid = 0
plot_times = 0
adj_lists_to_plot = []
for i in range(num_samples):
sampled_graph = model()
if isinstance(sampled_graph, list):
# When the model is a batched implementation, a list of
# DGLGraph objects is returned. Note that with model(),
# we generate a single graph as with the non-batched
# implementation. We actually support batched generation
# during the inference so feel free to modify the code.
sampled_graph = sampled_graph[0]
sampled_adj_list = dglGraph_to_adj_list(sampled_graph)
adj_lists_to_plot.append(sampled_adj_list)
graph_size = sampled_graph.number_of_nodes()
valid_size = (self.v_min <= graph_size <= self.v_max)
cycle = is_cycle(sampled_graph)
num_total_size += graph_size
if valid_size:
num_valid_size += 1
if cycle:
num_cycle += 1
if valid_size and cycle:
num_valid += 1
if len(adj_lists_to_plot) >= 4:
plot_times += 1
fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(2, 2)
axes = {0: ax0, 1: ax1, 2: ax2, 3: ax3}
for i in range(4):
nx.draw_circular(nx.from_dict_of_lists(adj_lists_to_plot[i]),
with_labels=True, ax=axes[i])
plt.savefig(self.dir + '/samples/{:d}'.format(plot_times))
plt.close()
adj_lists_to_plot = []
self.num_samples_examined = num_samples
self.average_size = num_total_size / num_samples
self.valid_size_ratio = num_valid_size / num_samples
self.cycle_ratio = num_cycle / num_samples
self.valid_ratio = num_valid / num_samples