當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.cycle_basis方法代碼示例

本文整理匯總了Python中networkx.cycle_basis方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.cycle_basis方法的具體用法?Python networkx.cycle_basis怎麽用?Python networkx.cycle_basis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.cycle_basis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: decode_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def decode_graph(adj, prefix):
    adj = np.asmatrix(adj)
    G = nx.from_numpy_matrix(adj)
    # G.remove_nodes_from(nx.isolates(G))
    print('num of nodes: {}'.format(G.number_of_nodes()))
    print('num of edges: {}'.format(G.number_of_edges()))
    G_deg = nx.degree_histogram(G)
    G_deg_sum = [a * b for a, b in zip(G_deg, range(0, len(G_deg)))]
    print('average degree: {}'.format(sum(G_deg_sum) / G.number_of_nodes()))
    if nx.is_connected(G):
        print('average path length: {}'.format(nx.average_shortest_path_length(G)))
        print('average diameter: {}'.format(nx.diameter(G)))
    G_cluster = sorted(list(nx.clustering(G).values()))
    print('average clustering coefficient: {}'.format(sum(G_cluster) / len(G_cluster)))
    cycle_len = []
    cycle_all = nx.cycle_basis(G, 0)
    for item in cycle_all:
        cycle_len.append(len(item))
    print('cycles', cycle_len)
    print('cycle count', len(cycle_len))
    draw_graph(G, prefix=prefix) 
開發者ID:JiaxuanYou,項目名稱:graph-generation,代碼行數:23,代碼來源:utils.py

示例2: stabilizers

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def stabilizers(fer_op):
    """ stabilizers """
    edge_list = bravyi_kitaev_fast_edge_list(fer_op)
    num_qubits = edge_list.shape[1]

    graph = networkx.Graph()
    graph.add_edges_from(tuple(edge_list.transpose()))
    stabs = np.asarray(networkx.cycle_basis(graph))
    stabilizer_ops = []
    for stab in stabs:
        a_op = WeightedPauliOperator(paulis=[[1.0, Pauli.from_label('I' * num_qubits)]])
        stab = np.asarray(stab)
        for i in range(np.size(stab)):
            a_op = a_op * edge_operator_aij(edge_list, stab[i], stab[(i + 1) % np.size(stab)]) * 1j
        stabilizer_ops.append(a_op)

    return stabilizer_ops 
開發者ID:Qiskit,項目名稱:qiskit-aqua,代碼行數:19,代碼來源:bksf.py

示例3: test_cycle_basis

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def test_cycle_basis(self):
        G=self.G
        cy=networkx.cycle_basis(G,0)
        sort_cy= sorted( sorted(c) for c in cy )
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5]])
        cy=networkx.cycle_basis(G,1)
        sort_cy= sorted( sorted(c) for c in cy )
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5]])
        cy=networkx.cycle_basis(G,9)
        sort_cy= sorted( sorted(c) for c in cy )
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5]])
        # test disconnected graphs
        G.add_cycle(list("ABC"))
        cy=networkx.cycle_basis(G,9)
        sort_cy= sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
        assert_equal(sort_cy, [[0,1,2,3],[0,1,6,7,8],[0,3,4,5],['A','B','C']]) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:18,代碼來源:test_cycles.py

示例4: test_cycle_basis

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def test_cycle_basis(self):
        G = self.G
        cy = networkx.cycle_basis(G, 0)
        sort_cy = sorted(sorted(c) for c in cy)
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]])
        cy = networkx.cycle_basis(G, 1)
        sort_cy = sorted(sorted(c) for c in cy)
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]])
        cy = networkx.cycle_basis(G, 9)
        sort_cy = sorted(sorted(c) for c in cy)
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]])
        # test disconnected graphs
        nx.add_cycle(G, "ABC")
        cy = networkx.cycle_basis(G, 9)
        sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5],
                               ['A', 'B', 'C']]) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:19,代碼來源:test_cycles.py

示例5: test_cycle_basis

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def test_cycle_basis(self):
        G = self.G
        cy = networkx.cycle_basis(G, 0)
        sort_cy = sorted(sorted(c) for c in cy)
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]])
        cy = networkx.cycle_basis(G, 1)
        sort_cy = sorted(sorted(c) for c in cy)
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]])
        cy = networkx.cycle_basis(G, 9)
        sort_cy = sorted(sorted(c) for c in cy)
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5]])
        # test disconnected graphs
        nx.add_cycle(G, "ABC")
        cy = networkx.cycle_basis(G, 9)
        sort_cy = sorted(sorted(c) for c in cy[:-1]) + [sorted(cy[-1])]
        assert_equal(sort_cy, [[0, 1, 2, 3], [0, 1, 6, 7, 8], [0, 3, 4, 5],
                     ['A', 'B', 'C']]) 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:19,代碼來源:test_cycles.py

示例6: penalized_logp

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def penalized_logp(s):
    if s is None: return -100.0
    mol = Chem.MolFromSmiles(s)
    if mol is None: return -100.0

    logP_mean = 2.4570953396190123
    logP_std = 1.434324401111988
    SA_mean = -3.0525811293166134
    SA_std = 0.8335207024513095
    cycle_mean = -0.0485696876403053
    cycle_std = 0.2860212110245455

    log_p = Descriptors.MolLogP(mol)
    SA = -sascorer.calculateScore(mol)

    # cycle score
    cycle_list = nx.cycle_basis(nx.Graph(Chem.rdmolops.GetAdjacencyMatrix(mol)))
    if len(cycle_list) == 0:
        cycle_length = 0
    else:
        cycle_length = max([len(j) for j in cycle_list])
    if cycle_length <= 6:
        cycle_length = 0
    else:
        cycle_length = cycle_length - 6
    cycle_score = -cycle_length

    normalized_log_p = (log_p - logP_mean) / logP_std
    normalized_SA = (SA - SA_mean) / SA_std
    normalized_cycle = (cycle_score - cycle_mean) / cycle_std
    return normalized_log_p + normalized_SA + normalized_cycle 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:33,代碼來源:properties.py

示例7: cycles_count

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def cycles_count(variables, relations):

    g = as_networkx_graph(variables, relations)
    cycles = nx.cycle_basis(g)
    return len(cycles) 
開發者ID:Orange-OpenSource,項目名稱:pyDcop,代碼行數:7,代碼來源:graphs.py

示例8: vacuum_operator

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def vacuum_operator(edge_matrix_indices):
    """Use the stabilizers to find the vacuum state in bravyi_kitaev_fast.

    Args:
        edge_matrix_indices(numpy array): specifying the edges

    Return:
        An instance of QubitOperator

    """
    # Initialize qubit operator.
    g = networkx.Graph()
    g.add_edges_from(tuple(edge_matrix_indices.transpose()))
    stabs = numpy.array(networkx.cycle_basis(g))
    vac_operator = QubitOperator(())
    for stab in stabs:

        A = QubitOperator(())
        stab = numpy.array(stab)
        for i in range(numpy.size(stab)):
            if i == (numpy.size(stab) - 1):
                A = (1j)*A * edge_operator_aij(edge_matrix_indices,
                                               stab[i], stab[0])
            else:
                A = (1j)*A * edge_operator_aij(edge_matrix_indices,
                                               stab[i], stab[i+1])
        vac_operator = vac_operator*(QubitOperator(()) + A)/numpy.sqrt(2)

    return vac_operator 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:31,代碼來源:_bksf.py

示例9: enumerate_cycle_basis

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def enumerate_cycle_basis(molecule):
        """Enumerate a closed cycle basis of bonds in molecule.

        This uses cycle_basis from NetworkX:
        https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.cycles.cycle_basis.html#networkx.algorithms.cycles.cycle_basis

        Parameters
        ----------
        molecule : OEMol
            The molecule for a closed cycle basis of Bonds is to be identified

        Returns
        -------
        bond_cycle_basis : list of list of OEBond
            bond_cycle_basis[cycle_index] is a list of OEBond objects that define a cycle in the basis
            You can think of these as the minimal spanning set of ring systems to check.
        """
        g = nx.Graph()
        for atom in molecule.GetAtoms():
            g.add_node(atom.GetIdx())
        for bond in molecule.GetBonds():
            g.add_edge(bond.GetBgnIdx(), bond.GetEndIdx(), bond=bond)
        bond_cycle_basis = list()
        for cycle in nx.cycle_basis(g):
            bond_cycle = list()
            for i in range(len(cycle)):
                atom_index_1 = cycle[i]
                atom_index_2 = cycle[(i+1)%len(cycle)]
                edge = g.edges[atom_index_1,atom_index_2]
                bond = edge['bond']
                bond_cycle.append(bond)
            bond_cycle_basis.append(bond_cycle)
        return bond_cycle_basis 
開發者ID:choderalab,項目名稱:perses,代碼行數:35,代碼來源:topology_proposal.py

示例10: vacuum_operator

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def vacuum_operator(fer_op):
    """Use the stabilizers to find the vacuum state in bravyi_kitaev_fast.

    Args:
        fer_op (FermionicOperator): the fermionic operator in the second quantized form

    Returns:
        WeightedPauliOperator: the qubit operator
    """
    edge_list = bravyi_kitaev_fast_edge_list(fer_op)
    num_qubits = edge_list.shape[1]
    vac_operator = WeightedPauliOperator(paulis=[[1.0, Pauli.from_label('I' * num_qubits)]])

    graph = networkx.Graph()
    graph.add_edges_from(tuple(edge_list.transpose()))
    stabs = np.asarray(networkx.cycle_basis(graph))
    for stab in stabs:
        a_op = WeightedPauliOperator(paulis=[[1.0, Pauli.from_label('I' * num_qubits)]])
        stab = np.asarray(stab)
        for i in range(np.size(stab)):
            a_op = a_op * edge_operator_aij(edge_list, stab[i], stab[(i + 1) % np.size(stab)]) * 1j
            # a_op.scaling_coeff(1j)
        a_op += WeightedPauliOperator(paulis=[[1.0, Pauli.from_label('I' * num_qubits)]])
        vac_operator = vac_operator * a_op * np.sqrt(2)
        # vac_operator.scaling_coeff()

    return vac_operator 
開發者ID:Qiskit,項目名稱:qiskit-aqua,代碼行數:29,代碼來源:bksf.py

示例11: cleanup_fixed_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def cleanup_fixed_graph(pruned):
    # remove cycles
    while True:
        cycles = networkx.cycle_basis(pruned)
        if len(cycles) == 0:
            break

        to_delete = None
        worst_val = None
        for cycle in cycles:
            cur_worst_val = None
            cur_worst = None
            for a,b,data in pruned.edges(cycle, data=True):
                cur_val = data["p"]
                if cur_worst_val is None or cur_val < cur_worst_val:
                    cur_worst_val = cur_val
                    cur_worst = (a,b)
            if worst_val is None or cur_worst_val < worst_val:
                worst_val = cur_worst_val
                to_delete = cur_worst

        pruned.remove_edge(*to_delete)

    # remove all cis-edges at the ends of subgraphs
    degrees = pruned.degree()
    to_delete = []
    for node, degree in dict(degrees).items():
        if degree == 1:
            edge = list(pruned.edges([node], data=True))[0]
            if edge[2]["kind"]=="facing":
                to_delete.append(node)
    pruned.remove_nodes_from(to_delete)

    # remove unconnected nodes
    pruned.remove_nodes_from([node for (node, degree) in dict(pruned.degree()).items() if degree==0])

    return pruned 
開發者ID:grocsvs,項目名稱:grocsvs,代碼行數:39,代碼來源:graphing.py

示例12: correctLoops

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def correctLoops(code, loops_graph, charge_type):
    while nx.cycle_basis(loops_graph) != []:
        cycle = nx.cycle_basis(loops_graph)[0]
        loop = path.Path(cycle)
        for data in code.Primal.nodes():
            if loop.contains_points([data]) == [True]:
                charge = code.Primal.node[data]['charge'][charge_type]
                code.Primal.node[data]['charge'][charge_type] = (charge + 1)%2

        l = len(cycle)
        for i in range(l):
            n1, n2 = cycle[i], cycle[(i+1)%l]
            loops_graph.remove_edge(*(n1,n2))

    return code, loops_graph 
開發者ID:jacobmarks,項目名稱:QTop,代碼行數:17,代碼來源:dsp.py

示例13: loops_within_feeder

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def loops_within_feeder(self, *args):
        """Returns the number of loops within a feeder."""
        if args:
            return len(nx.cycle_basis(args[0]))
        else:
            return len(nx.cycle_basis(self.G.graph)) 
開發者ID:NREL,項目名稱:ditto,代碼行數:8,代碼來源:network_analysis.py

示例14: get_graph_metrics

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def get_graph_metrics(self):
        nxGraph = self.nxGraph.to_undirected()
        islands = list(nx.connected_component_subgraphs(nxGraph))
        print('Number of islands: ', len(islands))
        loops = nx.cycle_basis(nxGraph)
        print('Number of loops: ', len(loops))
        print('')
        for i, eachCycle in enumerate(loops):
            print('Loop ' + str(i) + ' : starts with node "' + eachCycle[0] + '"') 
開發者ID:NREL,項目名稱:ditto,代碼行數:11,代碼來源:wm_reader.py

示例15: minimum_cycle_basis

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import cycle_basis [as 別名]
def minimum_cycle_basis(G, weight=None):
    """ Returns a minimum weight cycle basis for G

    Minimum weight means a cycle basis for which the total weight
    (length for unweighted graphs) of all the cycles is minimum.

    Parameters
    ----------
    G : NetworkX Graph
    weight: string
        name of the edge attribute to use for edge weights

    Returns
    -------
    A list of cycle lists.  Each cycle list is a list of nodes
    which forms a cycle (loop) in G. Note that the nodes are not
    necessarily returned in a order by which they appear in the cycle

    Examples
    --------
    >>> G=nx.Graph()
    >>> G.add_cycle([0,1,2,3])
    >>> G.add_cycle([0,3,4,5])
    >>> print(nx.minimum_cycle_basis(G))
    [[0, 1, 2, 3], [0, 3, 4, 5]]

    References:
        [1] Kavitha, Telikepalli, et al. "An O(m^2n) Algorithm for
        Minimum Cycle Basis of Graphs."
        http://link.springer.com/article/10.1007/s00453-007-9064-z
        [2] de Pina, J. 1995. Applications of shortest path methods.
        Ph.D. thesis, University of Amsterdam, Netherlands

    See Also
    --------
    simple_cycles, cycle_basis
    """
    # We first split the graph in commected subgraphs
    return sum((_min_cycle_basis(c, weight) for c in
                nx.connected_component_subgraphs(G)), []) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:42,代碼來源:cycles.py


注:本文中的networkx.cycle_basis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。