當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.connected_components方法代碼示例

本文整理匯總了Python中networkx.connected_components方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.connected_components方法的具體用法?Python networkx.connected_components怎麽用?Python networkx.connected_components使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.connected_components方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _max_common_subgraph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def _max_common_subgraph(GA, GB, pairings):
    matches = dict([(i, j) for i, j in enumerate(pairings)])
    node_ids = []
    for i, j in GA.edges():
        ii = matches[i]
        jj = matches[j]
        li = GA.node[i]['label']
        lii = GB.node[ii]['label']
        lj = GA.node[j]['label']
        ljj = GB.node[jj]['label']
        if ((ii, jj) in GB.edges() or (jj, ii) in GB.edges()) and li == lii and lj == ljj:
            node_ids.append(ii)
            node_ids.append(jj)
    G = nx.subgraph(GB, node_ids)
    cc = nx.connected_components(G)
    return cc, G 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:18,代碼來源:__init__.py

示例2: _radial_behind

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def _radial_behind(self, home_node, behind_node):
        """Detect what nodes create a radial string behind the edge from
        home_node to behind_node"""

        base_islands = nx.number_connected_components(self.dispG)

        # If we remove the edge in question, it should radialize the system
        #  and we can then detect the side to remove
        G = nx.Graph()
        G.add_nodes_from(self.dispG.nodes())
        G.add_edges_from(self.dispG.edges())
        G.remove_edge(home_node, behind_node)

        node_sets = list(nx.connected_components(G))

        if len(node_sets) == base_islands:
            # There is no radial path behind this node
            return None
        else:
            for ns in node_sets:
                if behind_node in ns:
                    # We know know what nodes to remove from the display graph
                    #  to remove the radial string
                    return ns 
開發者ID:jsexauer,項目名稱:networkx_viewer,代碼行數:26,代碼來源:graph_canvas.py

示例3: graph_diameter

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def graph_diameter(variables, relations):
    """
    Compute the graph diameter(s).
    If the graph contains several independent sub graph, returns a list the
    diamater of each of the subgraphs.

    :param variables:
    :param relations:
    :return:
    """
    diams = []
    g = as_networkx_graph(variables, relations)
    components  = (g.subgraph(c).copy() for c in nx.connected_components(g))
    for c in components:
        diams.append(nx.diameter(c))

    return diams 
開發者ID:Orange-OpenSource,項目名稱:pyDcop,代碼行數:19,代碼來源:graphs.py

示例4: _create_egonet

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def _create_egonet(self, node):
        """
        Creating an ego net, extracting personas and partitioning it.

        Args:
            node: Node ID for egonet (ego node).
        """
        ego_net_minus_ego = self.graph.subgraph(self.graph.neighbors(node))
        components = {i: n for i, n in enumerate(nx.connected_components(ego_net_minus_ego))}
        new_mapping = {}
        personalities = []
        for k, v in components.items():
            personalities.append(self.index)
            for other_node in v:
                new_mapping[other_node] = self.index
            self.index = self.index+1
        self.components[node] = new_mapping
        self.personalities[node] = personalities 
開發者ID:benedekrozemberczki,項目名稱:EgoSplitting,代碼行數:20,代碼來源:ego_splitter.py

示例5: _create_egonet

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def _create_egonet(self, node):
        """
        Creating an ego net, extracting personas and partitioning it.

        Arg types:
            * **node** *(int)* - Node ID for ego-net (ego node).
        """
        ego_net_minus_ego = self.graph.subgraph(self.graph.neighbors(node))
        components = {i: n for i, n in enumerate(nx.connected_components(ego_net_minus_ego))}
        new_mapping = {}
        personalities = []
        for k, v in components.items():
            personalities.append(self.index)
            for other_node in v:
                new_mapping[other_node] = self.index
            self.index = self.index+1
        self.components[node] = new_mapping
        self.personalities[node] = personalities 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:20,代碼來源:ego_splitter.py

示例6: rectify_labels

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def rectify_labels(G, labels):
    # Ensure labels are rebased and
    # are different between different connected compoments
    graph = G.copy()
    node_to_annot_idx = nx.get_node_attributes(graph, 'annot_idx')
    cut_edges = []
    for u, v in graph.edges():
        idx1 = node_to_annot_idx[u]
        idx2 = node_to_annot_idx[v]
        if labels[idx1] != labels[idx2]:
            cut_edges.append((u, v))
    graph.remove_edges_from(cut_edges)
    ccs_nodes = list(nx.connected_components(graph))
    ccs_idxs = ut.unflat_take(node_to_annot_idx, ccs_nodes)
    # Make consistent sorting
    ccs_idxs = [sorted(idxs) for idxs in ccs_idxs]
    ccs_idxs = ut.sortedby(ccs_idxs, ut.take_column(ccs_idxs, 0))
    labels = ut.ungroup([[c] * len(x) for c, x in enumerate(ccs_idxs)], ccs_idxs)
    labels = np.array(labels)
    return labels 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:22,代碼來源:script_bp_cut.py

示例7: unconstrained_one_edge_augmentation

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def unconstrained_one_edge_augmentation(G):
    """Finds the smallest set of edges to connect G.

    This is a variant of the unweighted MST problem.
    If G is not empty, a feasible solution always exists.

    Example
    -------
    >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
    >>> G.add_nodes_from([6, 7, 8])
    >>> sorted(unconstrained_one_edge_augmentation(G))
    [(1, 4), (4, 6), (6, 7), (7, 8)]
    """
    ccs1 = list(nx.connected_components(G))
    C = collapse(G, ccs1)
    # When we are not constrained, we can just make a meta graph tree.
    meta_nodes = list(C.nodes())
    # build a path in the metagraph
    meta_aug = list(zip(meta_nodes, meta_nodes[1:]))
    # map that path to the original graph
    inverse = defaultdict(list)
    for k, v in C.graph['mapping'].items():
        inverse[v].append(k)
    for mu, mv in meta_aug:
        yield (inverse[mu][0], inverse[mv][0]) 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:27,代碼來源:nx_edge_augmentation.py

示例8: _high_degree_components

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def _high_degree_components(G, k):
    """Helper for filtering components that cant be k-edge-connected.

    Removes and generates each node with degree less than k.  Then generates
    remaining components where all nodes have degree at least k.
    """
    # Iteravely remove parts of the graph that are not k-edge-connected
    H = G.copy()
    singletons = set(_low_degree_nodes(H, k))
    while singletons:
        # Only search neighbors of removed nodes
        nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons)))
        nbunch.difference_update(singletons)
        H.remove_nodes_from(singletons)
        for node in singletons:
            yield {node}
        singletons = set(_low_degree_nodes(H, k, nbunch))

    # Note: remaining connected components may not be k-edge-connected
    if G.is_directed():
        for cc in nx.strongly_connected_components(H):
            yield cc
    else:
        for cc in nx.connected_components(H):
            yield cc 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:27,代碼來源:nx_edge_kcomponents.py

示例9: positive_components

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def positive_components(infr, graph=None):
        r"""
        Generates the positive connected compoments (PCCs) in the graph
        These will contain both consistent and inconsinstent PCCs.

        Yields:
            cc: set: nodes within the PCC
        """
        pos_graph = infr.pos_graph
        if graph is None or graph is infr.graph:
            ccs = pos_graph.connected_components()
        else:
            unique_labels = {
                pos_graph.node_label(node) for node in graph.nodes()}
            ccs = (pos_graph.connected_to(node) for node in unique_labels)
        for cc in ccs:
            yield cc 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:19,代碼來源:mixin_dynamic.py

示例10: _create_egonet

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def _create_egonet(self, node):
        """
        Creating an ego net, extracting personas and partitioning it.
        Args:
            node: Node ID for egonet (ego node).
        """
        ego_net_minus_ego = self.graph.subgraph(self.graph.neighbors(node))
        components = {i: n for i, n in enumerate(nx.connected_components(ego_net_minus_ego))}
        new_mapping = {}
        personalities = []
        for k, v in components.items():
            personalities.append(self.index)
            for other_node in v:
                new_mapping[other_node] = self.index
            self.index = self.index+1
        self.components[node] = new_mapping
        self.personalities[node] = personalities 
開發者ID:benedekrozemberczki,項目名稱:Splitter,代碼行數:19,代碼來源:ego_splitting.py

示例11: visualize_frags

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def visualize_frags(outdir, graphs, options):
    from rpy2.robjects import r

    utilities.ensure_dir(outdir)

    for i, graph in enumerate(graphs):
        r.pdf(os.path.join(outdir, "fragments.cluster_{}.pdf".format(i)))

        for component in networkx.connected_components(graph):
            subgraph = graph.subgraph(component)
            
            ends = [node for node,degree in subgraph.degree_iter() if degree==1]
            breakends = [node for node in list(networkx.shortest_simple_paths(subgraph, ends[0], ends[1]))[0]]
            # breakends = [breakend_from_label(node) for node in breakends]
            breakends = breakends[:-1:2] + breakends[-1:]
            # print ")"*100, breakends

            for sample, dataset in sorted(options.iter_10xdatasets()):
                plot_frags(breakends, options, sample, dataset)
        # plot_frags(breakpoints, options, sample, dataset)
        r["dev.off"]() 
開發者ID:grocsvs,項目名稱:grocsvs,代碼行數:23,代碼來源:graphing.py

示例12: dendritic_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def dendritic_graph(self):
        """
        Builds skeleton of the topological representation (used internally)
        """
        diam = networkx.diameter(self.gl)
        g3 = networkx.Graph()
        dicdend = {}
        for n in range(diam-1):
            nodedist = []
            for k in self.pl:
                dil = networkx.shortest_path_length(self.gl, self.root, k)
                if dil == n:
                    nodedist.append(str(k))
            g2 = self.gl.subgraph(nodedist)
            dicdend[n] = sorted(networkx.connected_components(g2))
            for n2, yu in enumerate(dicdend[n]):
                g3.add_node(str(n) + '_' + str(n2))
                if n > 0:
                    for n3, yu2 in enumerate(dicdend[n-1]):
                        if networkx.is_connected(self.gl.subgraph(list(yu)+list(yu2))):
                            g3.add_edge(str(n) + '_' + str(n2), str(n-1) + '_' + str(n3))
        return g3, dicdend 
開發者ID:CamaraLab,項目名稱:scTDA,代碼行數:24,代碼來源:main.py

示例13: findSubtours

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def findSubtours(self, checkonly, sol):
        EPS = 1.e-6
        edges = []
        x = self.model.data
        for (i, j) in x:
            if self.model.getSolVal(sol, x[i, j]) > EPS:
                edges.append((i,j))

        G = networkx.Graph()
        G.add_edges_from(edges)
        Components = list(networkx.connected_components(G))

        if len(Components) == 1:
            return False
        elif checkonly:
            return True

        for S in Components:
            self.model.addCons(quicksum(x[i, j] for i in S for j in S if j > i) <= len(S) - 1)
            print("cut: len(%s) <= %s" % (S, len(S) - 1))

        return True 
開發者ID:SCIP-Interfaces,項目名稱:PySCIPOpt,代碼行數:24,代碼來源:tsp_lazy.py

示例14: assign_cc

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def assign_cc(DG,max_cc_size=sys.maxsize):
    #CC=list(nx.connected_components(nx.Graph(DG)))
    #for cc in CC:
    #    remove_outsider_nodes_from_cc(DG,cc)
    
    # recompute CC after having removed outsiders from original CCs
    # assign each node to its cc_id
    CC=list(nx.connected_components(nx.Graph(DG)))
    cc_id=0
    for cc in CC:
        cc_id +=1
        if len(cc) > max_cc_size:
            # print ("remove nodes from too large", len(cc) )
            for node_id in cc:
                DG.remove_node(node_id)
            continue
        for node_id in cc:
            DG.nodes[node_id]['cc_id'] = cc_id 
開發者ID:GATB,項目名稱:DiscoSnp,代碼行數:20,代碼來源:K3000_gfa_post_treatment.py

示例15: Tab_split

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_components [as 別名]
def Tab_split(self):
          UG1 = self._Callinout.fcgnx_class_level.to_undirected(reciprocal=False) 
          nodelist = list(nx.connected_components(UG1))
          
          #for i in nodelist:
          #    print i
          threshold = 5 #from 5 to 10
          del UG1    
          max_nodes = max([len(i) for i in nodelist])
          
          if max_nodes < threshold or Global.WHOLE_PROGRAM_ANALYSIS:
             #not split
             t = []
             for i in nodelist:
                 t = list(t) + list(i)
             self.new_nodelist = t
             self.subgraph_num = 1     
          else:
             self.new_nodelist = [ i for i in nodelist if len(i) >= threshold ]
             self.subgraph_num = len(self.new_nodelist) 
       
      # this part is to find the major components 
開發者ID:ririhedou,項目名稱:dr_droid,代碼行數:24,代碼來源:NewApp.py


注:本文中的networkx.connected_components方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。