本文整理匯總了Python中networkx.connected_caveman_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.connected_caveman_graph方法的具體用法?Python networkx.connected_caveman_graph怎麽用?Python networkx.connected_caveman_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.connected_caveman_graph方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_encode_decode_adj
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def test_encode_decode_adj():
######## code test ###########
G = nx.ladder_graph(5)
G = nx.grid_2d_graph(20,20)
G = nx.ladder_graph(200)
G = nx.karate_club_graph()
G = nx.connected_caveman_graph(2,3)
print(G.number_of_nodes())
adj = np.asarray(nx.to_numpy_matrix(G))
G = nx.from_numpy_matrix(adj)
#
start_idx = np.random.randint(adj.shape[0])
x_idx = np.array(bfs_seq(G, start_idx))
adj = adj[np.ix_(x_idx, x_idx)]
print('adj\n',adj)
adj_output = encode_adj(adj,max_prev_node=5)
print('adj_output\n',adj_output)
adj_recover = decode_adj(adj_output,max_prev_node=5)
print('adj_recover\n',adj_recover)
print('error\n',np.amin(adj_recover-adj),np.amax(adj_recover-adj))
adj_output = encode_adj_flexible(adj)
for i in range(len(adj_output)):
print(len(adj_output[i]))
adj_recover = decode_adj_flexible(adj_output)
print(adj_recover)
print(np.amin(adj_recover-adj),np.amax(adj_recover-adj))
示例2: test_connected_caveman_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def test_connected_caveman_graph():
G = nx.connected_caveman_graph(4,3)
assert_equal(len(G),12)
assert_equal(len(G.nodes()),12)
G = nx.connected_caveman_graph(1,5)
K5 = nx.complete_graph(5)
K5.remove_edge(3,4)
assert_true(nx.is_isomorphic(G,K5))
示例3: connected_caveman_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def connected_caveman_graph(l, k):
"""Returns a connected caveman graph of `l` cliques of size `k`.
The connected caveman graph is formed by creating `n` cliques of size
`k`, then a single edge in each clique is rewired to a node in an
adjacent clique.
Parameters
----------
l : int
number of cliques
k : int
size of cliques
Returns
-------
G : NetworkX Graph
connected caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.connected_caveman_graph(3, 3)
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
G = nx.caveman_graph(l, k)
for start in range(0, l * k, k):
G.remove_edge(start, start + 1)
G.add_edge(start, (start - 1) % (l * k))
return G
示例4: test_connected_caveman_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def test_connected_caveman_graph():
G = nx.connected_caveman_graph(4, 3)
assert_equal(len(G), 12)
G = nx.connected_caveman_graph(1, 5)
K5 = nx.complete_graph(5)
K5.remove_edge(3, 4)
assert_true(nx.is_isomorphic(G, K5))
示例5: caveman_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def caveman_graph(l, k):
"""Returns a caveman graph of ``l`` cliques of size ``k``.
Parameters
----------
l : int
Number of cliques
k : int
Size of cliques
Returns
-------
G : NetworkX Graph
caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.caveman_graph(3, 3)
See also
--------
connected_caveman_graph
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
# l disjoint cliques of size k
G = nx.empty_graph(l*k)
G.name = "caveman_graph(%s,%s)" % (l*k, k)
if k > 1:
for start in range(0, l*k, k):
edges = itertools.combinations(range(start, start+k), 2)
G.add_edges_from(edges)
return G
示例6: connected_caveman_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def connected_caveman_graph(l, k):
"""Returns a connected caveman graph of ``l`` cliques of size ``k``.
The connected caveman graph is formed by creating ``n`` cliques of size
``k``, then a single edge in each clique is rewired to a node in an
adjacent clique.
Parameters
----------
l : int
number of cliques
k : int
size of cliques
Returns
-------
G : NetworkX Graph
connected caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.connected_caveman_graph(3, 3)
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
G = nx.caveman_graph(l, k)
G.name = "connected_caveman_graph(%s,%s)" % (l, k)
for start in range(0, l*k, k):
G.remove_edge(start, start+1)
G.add_edge(start, (start-1) % (l*k))
return G
示例7: caveman_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def caveman_graph(l, k):
"""Returns a caveman graph of `l` cliques of size `k`.
Parameters
----------
l : int
Number of cliques
k : int
Size of cliques
Returns
-------
G : NetworkX Graph
caveman graph
Notes
-----
This returns an undirected graph, it can be converted to a directed
graph using :func:`nx.to_directed`, or a multigraph using
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
described in [1]_ and it is unclear which of the directed
generalizations is most useful.
Examples
--------
>>> G = nx.caveman_graph(3, 3)
See also
--------
connected_caveman_graph
References
----------
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
Amer. J. Soc. 105, 493-527, 1999.
"""
# l disjoint cliques of size k
G = nx.empty_graph(l * k)
if k > 1:
for start in range(0, l * k, k):
edges = itertools.combinations(range(start, start + k), 2)
G.add_edges_from(edges)
return G
示例8: ring_of_cliques
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def ring_of_cliques(num_cliques, clique_size):
"""Defines a "ring of cliques" graph.
A ring of cliques graph is consisting of cliques, connected through single
links. Each clique is a complete graph.
Parameters
----------
num_cliques : int
Number of cliques
clique_size : int
Size of cliques
Returns
-------
G : NetworkX Graph
ring of cliques graph
Raises
------
NetworkXError
If the number of cliques is lower than 2 or
if the size of cliques is smaller than 2.
Examples
--------
>>> G = nx.ring_of_cliques(8, 4)
See Also
--------
connected_caveman_graph
Notes
-----
The `connected_caveman_graph` graph removes a link from each clique to
connect it with the next clique. Instead, the `ring_of_cliques` graph
simply adds the link without removing any link from the cliques.
"""
if num_cliques < 2:
raise nx.NetworkXError('A ring of cliques must have at least '
'two cliques')
if clique_size < 2:
raise nx.NetworkXError('The cliques must have at least two nodes')
G = nx.Graph()
for i in range(num_cliques):
edges = itertools.combinations(range(i * clique_size, i * clique_size +
clique_size), 2)
G.add_edges_from(edges)
G.add_edge(i * clique_size + 1, (i + 1) * clique_size %
(num_cliques * clique_size))
return G
示例9: ring_of_cliques
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import connected_caveman_graph [as 別名]
def ring_of_cliques(num_cliques, clique_size):
"""Defines a "ring of cliques" graph.
A ring of cliques graph is consisting of cliques, connected through single
links. Each clique is a complete graph.
Parameters
----------
num_cliques : int
Number of cliques
clique_size : int
Size of cliques
Returns
-------
G : NetworkX Graph
ring of cliques graph
Raises
------
NetworkXError
If the number of cliques is lower than 2 or
if the size of cliques is smaller than 2.
Examples
--------
>>> G = nx.ring_of_cliques(8, 4)
See Also
--------
connected_caveman_graph
Notes
-----
The `connected_caveman_graph` graph removes a link from each clique to
connect it with the next clique. Instead, the `ring_of_cliques` graph
simply adds the link without removing any link from the cliques.
"""
if num_cliques < 2:
raise nx.NetworkXError('A ring of cliques must have at least '
'two cliques')
if clique_size < 2:
raise nx.NetworkXError('The cliques must have at least two nodes')
G = nx.Graph()
for i in range(num_cliques):
edges = itertools.combinations(range(i * clique_size, i * clique_size +
clique_size), 2)
G.add_edges_from(edges)
G.add_edge(i * clique_size + 1, (i + 1) * clique_size %
(num_cliques * clique_size))
return G