當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.complement方法代碼示例

本文整理匯總了Python中networkx.complement方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.complement方法的具體用法?Python networkx.complement怎麽用?Python networkx.complement使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.complement方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: find_pos_augment_edges

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def find_pos_augment_edges(infr, pcc, k=None):
        """
        # [[1, 0], [0, 2], [1, 2], [3, 1]]
        pos_sub = nx.Graph([[0, 1], [1, 2], [0, 2], [1, 3]])
        """
        if k is None:
            pos_k = infr.params['redun.pos']
        else:
            pos_k = k
        pos_sub = infr.pos_graph.subgraph(pcc)

        # TODO:
        # weight by pairs most likely to be comparable

        # First try to augment only with unreviewed existing edges
        unrev_avail = list(nxu.edges_inside(infr.unreviewed_graph, pcc))
        try:
            check_edges = list(nxu.k_edge_augmentation(
                pos_sub, k=pos_k, avail=unrev_avail, partial=False))
        except nx.NetworkXUnfeasible:
            check_edges = None
        if not check_edges:
            # Allow new edges to be introduced
            full_sub = infr.graph.subgraph(pcc).copy()
            new_avail = ut.estarmap(infr.e_, nx.complement(full_sub).edges())
            full_avail = unrev_avail + new_avail
            n_max = (len(pos_sub) * (len(pos_sub) - 1)) // 2
            n_complement = n_max - pos_sub.number_of_edges()
            if len(full_avail) == n_complement:
                # can use the faster algorithm
                check_edges = list(nxu.k_edge_augmentation(
                    pos_sub, k=pos_k, partial=True))
            else:
                # have to use the slow approximate algo
                check_edges = list(nxu.k_edge_augmentation(
                    pos_sub, k=pos_k, avail=full_avail, partial=True))
        check_edges = set(it.starmap(e_, check_edges))
        return check_edges 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:40,代碼來源:mixin_matching.py

示例2: ensure_full

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def ensure_full(infr):
        """
        Explicitly places all edges, but does not make any feedback items
        """
        infr.print('ensure_full with %d nodes' % (len(infr.graph)), 2)
        new_edges = list(nx.complement(infr.graph).edges())
        infr.ensure_edges_from(new_edges) 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:9,代碼來源:mixin_helpers.py

示例3: find_connecting_edges

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def find_connecting_edges(infr):
        """
        Searches for a small set of edges, which if reviewed as positive would
        ensure that each PCC is k-connected.  Note that in somes cases this is
        not possible
        """
        label = 'name_label'
        node_to_label = infr.get_node_attrs(label)
        label_to_nodes = ut.group_items(node_to_label.keys(),
                                        node_to_label.values())

        # k = infr.params['redun.pos']
        k = 1
        new_edges = []
        prog = ut.ProgIter(list(label_to_nodes.keys()),
                           label='finding connecting edges',
                           enabled=infr.verbose > 0)
        for nid in prog:
            nodes = set(label_to_nodes[nid])
            G = infr.pos_graph.subgraph(nodes, dynamic=False)
            impossible = nxu.edges_inside(infr.neg_graph, nodes)
            impossible |= nxu.edges_inside(infr.incomp_graph, nodes)

            candidates = set(nx.complement(G).edges())
            candidates.difference_update(impossible)

            aug_edges = nxu.k_edge_augmentation(G, k=k, avail=candidates)
            new_edges += aug_edges
        prog.ensure_newline()
        return new_edges 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:32,代碼來源:mixin_helpers.py

示例4: setUp

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def setUp(self):
        self.Gnp = nx.gnp_random_graph(20,0.8)
        self.Anp = _AntiGraph(nx.complement(self.Gnp))
        self.Gd = nx.davis_southern_women_graph()
        self.Ad = _AntiGraph(nx.complement(self.Gd))
        self.Gk = nx.karate_club_graph()
        self.Ak = _AntiGraph(nx.complement(self.Gk))
        self.GA = [(self.Gnp, self.Anp),
                    (self.Gd,self.Ad),
                    (self.Gk, self.Ak)] 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:12,代碼來源:test_kcomponents.py

示例5: inter_community_non_edges

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def inter_community_non_edges(G, partition):
    """Returns the number of inter-community non-edges according to the
    given partition of the nodes of `G`.

    `G` must be a NetworkX graph.

    `partition` must be a partition of the nodes of `G`.

    A *non-edge* is a pair of nodes (undirected if `G` is undirected)
    that are not adjacent in `G`. The *inter-community non-edges* are
    those non-edges on a pair of nodes in different blocks of the
    partition.

    Implementation note: this function creates two intermediate graphs,
    which may require up to twice the amount of memory as required to
    store `G`.

    """
    # Alternate implementation that does not require constructing two
    # new graph objects (but does require constructing an affiliation
    # dictionary):
    #
    #     aff = dict(chain.from_iterable(((v, block) for v in block)
    #                                    for block in partition))
    #     return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v])
    #
    return inter_community_edges(nx.complement(G), partition) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:29,代碼來源:quality.py

示例6: setUp

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def setUp(self):
        self.Gnp = nx.gnp_random_graph(20, 0.8)
        self.Anp = _AntiGraph(nx.complement(self.Gnp))
        self.Gd = nx.davis_southern_women_graph()
        self.Ad = _AntiGraph(nx.complement(self.Gd))
        self.Gk = nx.karate_club_graph()
        self.Ak = _AntiGraph(nx.complement(self.Gk))
        self.GA = [(self.Gnp, self.Anp),
                   (self.Gd, self.Ad),
                   (self.Gk, self.Ak)] 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:12,代碼來源:test_kcomponents.py

示例7: redun_demo3

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def redun_demo3():
    r"""
    python -m ibeis.scripts.specialdraw redun_demo3 --show
    python -m ibeis.scripts.specialdraw redun_demo3 --saveparts=~/slides/incon_redun.jpg --dpi=300
    """
    from ibeis.algo.graph.state import POSTV, NEGTV, INCMP  # NOQA
    from ibeis.algo.graph import demo
    from ibeis.algo.graph import nx_utils as nxu
    import plottool_ibeis as pt

    # import networkx as nx
    pt.ensureqt()
    import matplotlib as mpl
    from ibeis.scripts.thesis import TMP_RC
    mpl.rcParams.update(TMP_RC)

    fnum = 1
    showkw = dict(show_inconsistency=False, show_labels=True,
                  simple_labels=True,
                  show_recent_review=False, wavy=False,
                  groupby='name_label',
                  splines='spline',
                  show_all=True,
                  pickable=True, fnum=fnum)

    graphkw = dict(hpad=50, vpad=50, group_grid=True)
    pnum_ = pt.make_pnum_nextgen(2, 1)

    infr = demo.make_demo_infr(ccs=[(1, 2, 3, 5, 4), (6,)])
    infr.add_feedback((5, 6), evidence_decision=POSTV)
    for e in nxu.complement_edges(infr.graph):
        infr.add_feedback(e, evidence_decision=INCMP)

    infr.graph.graph.update(graphkw)
    infr.show(pnum=pnum_(), **showkw)
    ax = pt.gca()
    ax.set_aspect('equal')

    ccs = [(1, 2, 3, 4), (11, 12, 13, 14, 15)]
    infr = demo.make_demo_infr(ccs=ccs)
    infr.add_feedback((4, 14), evidence_decision=NEGTV)
    import networkx as nx
    for e in nxu.edges_between(nx.complement(infr.graph), ccs[0], ccs[1]):
        print('e = %r' % (e,))
        infr.add_feedback(e, evidence_decision=INCMP)
    infr.graph.graph.update(graphkw)
    infr.show(pnum=pnum_(), **showkw)
    ax = pt.gca()
    ax.set_aspect('equal')

    fig = pt.gcf()
    fig.set_size_inches(10 / 3, 5)

    ut.show_if_requested() 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:56,代碼來源:specialdraw.py

示例8: max_clique

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def max_clique(G):
    r"""Find the Maximum Clique

    Finds the `O(|V|/(log|V|)^2)` apx of maximum clique/independent set
    in the worst case.

    Parameters
    ----------
    G : NetworkX graph
        Undirected graph

    Returns
    -------
    clique : set
        The apx-maximum clique of the graph

    Notes
    ------
    A clique in an undirected graph G = (V, E) is a subset of the vertex set
    `C \subseteq V`, such that for every two vertices in C, there exists an edge
    connecting the two. This is equivalent to saying that the subgraph
    induced by C is complete (in some cases, the term clique may also refer
    to the subgraph).

    A maximum clique is a clique of the largest possible size in a given graph.
    The clique number `\omega(G)` of a graph G is the number of
    vertices in a maximum clique in G. The intersection number of
    G is the smallest number of cliques that together cover all edges of G.

    http://en.wikipedia.org/wiki/Maximum_clique

    References
    ----------
    .. [1] Boppana, R., & Halldórsson, M. M. (1992).
        Approximating maximum independent sets by excluding subgraphs.
        BIT Numerical Mathematics, 32(2), 180–196. Springer.
        doi:10.1007/BF01994876
    """
    if G is None:
        raise ValueError("Expected NetworkX graph!")

    # finding the maximum clique in a graph is equivalent to finding
    # the independent set in the complementary graph
    cgraph = nx.complement(G)
    iset, _ = clique_removal(cgraph)
    return iset 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:48,代碼來源:clique.py

示例9: max_clique

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def max_clique(G):
    r"""Find the Maximum Clique

    Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set
    in the worst case.

    Parameters
    ----------
    G : NetworkX graph
        Undirected graph

    Returns
    -------
    clique : set
        The apx-maximum clique of the graph

    Notes
    ------
    A clique in an undirected graph G = (V, E) is a subset of the vertex set
    `C \subseteq V` such that for every two vertices in C there exists an edge
    connecting the two. This is equivalent to saying that the subgraph
    induced by C is complete (in some cases, the term clique may also refer
    to the subgraph).

    A maximum clique is a clique of the largest possible size in a given graph.
    The clique number `\omega(G)` of a graph G is the number of
    vertices in a maximum clique in G. The intersection number of
    G is the smallest number of cliques that together cover all edges of G.

    https://en.wikipedia.org/wiki/Maximum_clique

    References
    ----------
    .. [1] Boppana, R., & Halldórsson, M. M. (1992).
        Approximating maximum independent sets by excluding subgraphs.
        BIT Numerical Mathematics, 32(2), 180–196. Springer.
        doi:10.1007/BF01994876
    """
    if G is None:
        raise ValueError("Expected NetworkX graph!")

    # finding the maximum clique in a graph is equivalent to finding
    # the independent set in the complementary graph
    cgraph = nx.complement(G)
    iset, _ = clique_removal(cgraph)
    return iset 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:48,代碼來源:clique.py

示例10: max_clique

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import complement [as 別名]
def max_clique(G):
    r"""Find the Maximum Clique

    Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set
    in the worst case.

    Parameters
    ----------
    G : NetworkX graph
        Undirected graph

    Returns
    -------
    clique : set
        The apx-maximum clique of the graph

    Notes
    ------
    A clique in an undirected graph G = (V, E) is a subset of the vertex set
    `C \subseteq V`, such that for every two vertices in C, there exists an edge
    connecting the two. This is equivalent to saying that the subgraph
    induced by C is complete (in some cases, the term clique may also refer
    to the subgraph).

    A maximum clique is a clique of the largest possible size in a given graph.
    The clique number `\omega(G)` of a graph G is the number of
    vertices in a maximum clique in G. The intersection number of
    G is the smallest number of cliques that together cover all edges of G.

    https://en.wikipedia.org/wiki/Maximum_clique

    References
    ----------
    .. [1] Boppana, R., & Halldórsson, M. M. (1992).
        Approximating maximum independent sets by excluding subgraphs.
        BIT Numerical Mathematics, 32(2), 180–196. Springer.
        doi:10.1007/BF01994876
    """
    if G is None:
        raise ValueError("Expected NetworkX graph!")

    # finding the maximum clique in a graph is equivalent to finding
    # the independent set in the complementary graph
    cgraph = nx.complement(G)
    iset, _ = clique_removal(cgraph)
    return iset 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:48,代碼來源:clique.py


注:本文中的networkx.complement方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。