當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.bfs_tree方法代碼示例

本文整理匯總了Python中networkx.bfs_tree方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.bfs_tree方法的具體用法?Python networkx.bfs_tree怎麽用?Python networkx.bfs_tree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.bfs_tree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_scaffolds_for_molecule

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_scaffolds_for_molecule(self, molecule_id, data=False, default=None):
        """Return a list of scaffold SMILES connected to a query molecule ID.

        Parameters
        ----------
        molecule_id: (string) ID of query molecule.
        data : (string or bool, optional (default=False)) The scaffold node attribute returned in 2-tuple
            (n, dict[data]). If True, return entire scaffold node attribute dict as (n, dict).
            If False, return just the scaffold nodes n.
        default : (value, optional (default=None)) Value used for scaffold nodes that don’t have the
            requested attribute. Only relevant if data is not True or False.
        """
        scaffolds = []
        if molecule_id not in self:
            return scaffolds
        for succ in nx.bfs_tree(self, molecule_id, reverse=True):
            if self.nodes[succ].get('type') == 'scaffold':
                if data is False:
                    scaffolds.append(succ)
                elif data is True:
                    scaffolds.append((succ, self.nodes[succ]))
                else:
                    scaffolds.append((succ, self.nodes[succ].get(data, default)))
        return scaffolds 
開發者ID:UCLCheminformatics,項目名稱:ScaffoldGraph,代碼行數:26,代碼來源:graph.py

示例2: bfs_tree

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def bfs_tree(self, graph, reverse=False):
        """BFS tree from the graph to all other reachable graphs."""
        return list(nx.bfs_tree(self._graph, graph, reverse=reverse))[1:] 
開發者ID:Kappa-Dev,項目名稱:ReGraph,代碼行數:5,代碼來源:hierarchies.py

示例3: get_molecules_for_scaffold

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_molecules_for_scaffold(self, scaffold_smiles, data=False, default=None):
        """Return a list of molecule IDs which are represented by a scaffold in the graph.

        Note: This is determined by traversing the graph. In the case of a scaffold tree
        the results represent the rules used to prioritize the scaffolds.

        Parameters
        ----------
        scaffold_smiles : (string) SMILES of query scaffold.
        data : (string or bool, optional (default=False)) The molecule node attribute returned in 2-tuple
            (n, dict[data]). If True, return entire molecule node attribute dict as (n, dict).
            If False, return just the molecule nodes n.
        default : (value, optional (default=None)) Value used for molecule nodes that don’t have the
            requested attribute. Only relevant if data is not True or False.
        """
        molecules = []
        if scaffold_smiles not in self:
            scaffold_smiles = canonize_smiles(scaffold_smiles, failsafe=True)
            if scaffold_smiles not in self:
                return molecules
        for succ in nx.bfs_tree(self, scaffold_smiles, reverse=False):
            if self.nodes[succ].get('type') == 'molecule':
                if data is False:
                    molecules.append(succ)
                elif data is True:
                    molecules.append((succ, self.nodes[succ]))
                else:
                    molecules.append((succ, self.nodes[succ].get(data, default)))
        return molecules 
開發者ID:UCLCheminformatics,項目名稱:ScaffoldGraph,代碼行數:31,代碼來源:graph.py

示例4: get_parent_scaffolds

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_parent_scaffolds(self, scaffold_smiles, data=False, default=None, max_levels=-1):
        """Return a list of parent scaffolds for a query scaffold.

        Parameters
        ----------
        scaffold_smiles : (string)  SMILES of query scaffold.
        data : (string or bool, optional (default=False)) The scaffold node attribute returned in 2-tuple
            (n, dict[data]). If True, return entire scaffold node attribute dict as (n, dict).
            If False, return just the scaffold nodes n.
        default : (value, optional (default=None)) Value used for scaffold nodes that don’t have the
            requested attribute. Only relevant if data is not True or False.
        max_levels : (integer, optional (default=-1)) If > 0 only return scaffolds with a hierarchy
            difference to the query scaffold of max_levels.
        """
        parents = []
        if scaffold_smiles not in self:
            scaffold_smiles = canonize_smiles(scaffold_smiles, failsafe=True)
            if scaffold_smiles not in self:
                return parents
        level = self.nodes[scaffold_smiles].get('hierarchy', float('inf'))
        bfs = iter(nx.bfs_tree(self, scaffold_smiles, reverse=True).nodes)
        next(bfs)  # first entry is the query node
        for succ in bfs:
            d = self.nodes[succ]
            if d.get('type') == 'scaffold' and (max_levels < 0 or level - d.get('hierarchy', 0) <= max_levels):
                if data is False:
                    parents.append(succ)
                elif data is True:
                    parents.append((succ, self.nodes[succ]))
                else:
                    parents.append((succ, self.nodes[succ].get(data, default)))
        return parents 
開發者ID:UCLCheminformatics,項目名稱:ScaffoldGraph,代碼行數:34,代碼來源:graph.py

示例5: get_child_scaffolds

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_child_scaffolds(self, scaffold_smiles, data=False, default=None, max_levels=-1):
        """Return a list of child scaffolds for a query scaffold.

        Parameters
        ----------
        scaffold_smiles : (string)  SMILES of query scaffold.
        data : (string or bool, optional (default=False)) The scaffold node attribute returned in 2-tuple
            (n, dict[data]). If True, return entire scaffold node attribute dict as (n, dict).
            If False, return just the scaffold nodes n.
        default : (value, optional (default=None)) Value used for scaffold nodes that don’t have the
            requested attribute. Only relevant if data is not True or False.
        max_levels : (integer, optional (default=-1)) If > 0 only return scaffolds with a hierarchy
            difference to the query scaffold of max_levels.
        """
        children = []
        if scaffold_smiles not in self:
            scaffold_smiles = canonize_smiles(scaffold_smiles, failsafe=True)
            if scaffold_smiles not in self:
                return children
        level = self.nodes[scaffold_smiles].get('hierarchy', float('inf'))
        bfs = iter(nx.bfs_tree(self, scaffold_smiles, reverse=False).nodes)
        next(bfs)  # first entry is the query node
        for succ in bfs:
            d = self.nodes[succ]
            if d.get('type') == 'scaffold' and (max_levels < 0 or d.get('hierarchy', 0) - level <= max_levels):
                if data is False:
                    children.append(succ)
                elif data is True:
                    children.append((succ, self.nodes[succ]))
                else:
                    children.append((succ, self.nodes[succ].get(data, default)))
        return children 
開發者ID:UCLCheminformatics,項目名稱:ScaffoldGraph,代碼行數:34,代碼來源:graph.py

示例6: fit

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def fit(self, X, y=None):
        if self.assert_tree:
                assert self.root is not None
                self.hierarchy = nx.bfs_tree(self.hierarchy, self.root)
        return self 
開發者ID:quadflor,項目名稱:Quadflor,代碼行數:7,代碼來源:SpreadingActivation.py

示例7: skeleton_to_swc

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def skeleton_to_swc(skeleton, offset, resolution):
    import networkx as nx

    g = nx.Graph()
    g.add_nodes_from(skeleton.nodes())
    g.add_edges_from((e.u, e.v) for e in skeleton.edges())

    # Find a directed tree for mapping to a skeleton.
    if nx.number_of_nodes(g) > 1:
        # This discards cyclic edges in the graph.
        t = nx.bfs_tree(nx.minimum_spanning_tree(g), g.nodes()[0])
    else:
        t = nx.DiGraph()
        t.add_nodes_from(g)
    # Copy node attributes
    for n in t.nodes_iter():
        loc = skeleton.locations(n)
        # skeletopyze is z, y, x (as it should be).
        loc = np.array(loc)
        loc = np.multiply(loc + offset, resolution)
        t.node[n].update({'x': loc[0],
                          'y': loc[1],
                          'z': loc[2],
                          'radius': skeleton.diameters(n) / 2.0})

    # Set parent node ID
    for n, nbrs in t.adjacency_iter():
        for nbr in nbrs:
            t.node[nbr]['parent_id'] = n
            if 'radius' not in t.node[nbr]:
                t.node[nbr]['radius'] = -1

    return [[
        node_id,
        0,
        n['x'], n['y'], n['z'],
        n['radius'],
        n.get('parent_id', -1)] for node_id, n in t.nodes(data=True)] 
開發者ID:aschampion,項目名稱:diluvian,代碼行數:40,代碼來源:postprocessing.py

示例8: test_bfs_tree

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def test_bfs_tree(self):
        T = nx.bfs_tree(self.G, source=0)
        assert_equal(sorted(T.nodes()), sorted(self.G.nodes()))
        assert_equal(sorted(T.edges()), [(0, 1), (1, 2), (1, 3), (2, 4)]) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:6,代碼來源:test_bfs.py

示例9: test_bfs_tree_isolates

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def test_bfs_tree_isolates(self):
        G = nx.Graph()
        G.add_node(1)
        G.add_node(2)
        T = nx.bfs_tree(G, source=1)
        assert_equal(sorted(T.nodes()), [1])
        assert_equal(sorted(T.edges()), []) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:9,代碼來源:test_bfs.py

示例10: bfs_test_tree

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def bfs_test_tree(self):
        T = nx.bfs_tree(self.G, source=3, depth_limit=1)
        assert_equal(sorted(T.edges()), [(3, 2), (3, 4)]) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:5,代碼來源:test_bfs.py

示例11: bfs_tree

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def bfs_tree(G, source, reverse=False):
    """Return an oriented tree constructed from of a breadth-first-search
    starting at source.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Specify starting node for breadth-first search and return edges in
       the component reachable from source.

    reverse : bool, optional
       If True traverse a directed graph in the reverse direction

    Returns
    -------
    T: NetworkX DiGraph
       An oriented tree

    Examples
    --------
    >>> G = nx.path_graph(3)
    >>> print(list(nx.bfs_tree(G,1).edges()))
    [(1, 0), (1, 2)]

    Notes
    -----
    Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
    by D. Eppstein, July 2004.
    """
    T = nx.DiGraph()
    T.add_node(source)
    T.add_edges_from(bfs_edges(G, source, reverse=reverse))
    return T 
開發者ID:aws-samples,項目名稱:aws-kube-codesuite,代碼行數:37,代碼來源:breadth_first_search.py

示例12: get_minimum_model_set

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_minimum_model_set(self, model):
        if not isinstance(model, str):
            model = model.name
        return list(nx.bfs_tree(self.model_graph, model, reverse=True)) 
開發者ID:awslabs,項目名稱:autogluon,代碼行數:6,代碼來源:abstract_trainer.py

示例13: is_taint_related_to_ip

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def is_taint_related_to_ip(self, simrun_addr, stmt_idx, taint_type, simrun_whitelist=None):
        """
        Query in taint graph to check if a specific taint will taint the IP in the future or not.
        The taint is specified with the tuple (simrun_addr, stmt_idx, taint_type).

        :param simrun_addr:         Address of the SimRun.
        :param stmt_idx:            Statement ID.
        :param taint_type:          Type of the taint, might be one of the following: 'reg', 'tmp', 'mem'.
        :param simrun_whitelist:    A list of SimRun addresses that are whitelisted, i.e. the tainted exit will be
                                    ignored if it is in those SimRuns.
        :returns:                   True/False
        """

        if simrun_whitelist is None:
            simrun_whitelist = set()
        if type(simrun_whitelist) is not set:
            simrun_whitelist = set(simrun_whitelist)

        # Find the specific taint in our graph
        taint = None
        for n in self.taint_graph.nodes():
            if n.type == taint_type and n.addr == simrun_addr and n.stmt_id == stmt_idx:
                taint = n
                break

        if taint is None:
            raise AngrBackwardSlicingError('The specific taint is not found')

        bfs_tree = networkx.bfs_tree(self.taint_graph, taint)

        # A node is tainting the IP if one of the following criteria holds:
        # - a descendant tmp variable is used as a default exit or a conditional exit of its corresponding SimRun
        # - a descendant register is the IP itself

        for descendant in bfs_tree.nodes():
            if descendant.type == 'exit':
                if descendant.addr not in simrun_whitelist:
                    return True
            elif descendant.type == 'reg' and descendant.reg == self.project.arch.ip_offset:
                return True

        return False 
開發者ID:angr,項目名稱:angr,代碼行數:44,代碼來源:backward_slice.py

示例14: is_taint_impacting_stack_pointers

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def is_taint_impacting_stack_pointers(self, simrun_addr, stmt_idx, taint_type, simrun_whitelist=None):
        """
        Query in taint graph to check if a specific taint will taint the stack pointer in the future or not.
        The taint is specified with the tuple (simrun_addr, stmt_idx, taint_type).

        :param simrun_addr:         Address of the SimRun.
        :param stmt_idx:            Statement ID.
        :param taint_type:          Type of the taint, might be one of the following: 'reg', 'tmp', 'mem'.
        :param simrun_whitelist:    A list of SimRun addresses that are whitelisted.
        :returns:                   True/False.
        """

        if simrun_whitelist is None:
            simrun_whitelist = set()
        if type(simrun_whitelist) is not set:
            simrun_whitelist = set(simrun_whitelist)

        # Find the specific taint in our graph
        taint = None
        for n in self.taint_graph.nodes():
            if n.type == taint_type and n.addr == simrun_addr and n.stmt_id == stmt_idx:
                taint = n
                break

        if taint is None:
            raise AngrBackwardSlicingError('The specific taint is not found')

        bfs_tree = networkx.bfs_tree(self.taint_graph, taint)

        # A node is tainting the stack pointer if one of the following criteria holds:
        # - a descendant register is the sp/bp itself

        for descendant in bfs_tree.nodes():
            if descendant.type == 'reg' and (
                        descendant.reg in (self.project.arch.sp_offset, self.project.arch.bp_offset)
            ):
                return True

        return False

    #
    # Private methods
    # 
開發者ID:angr,項目名稱:angr,代碼行數:45,代碼來源:backward_slice.py

示例15: fit

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def fit(self, graph, bioactivity_map, progress=True):
        """Fit CSE to a scaffold graph.

        Parameters
        ----------
        graph : (sg.ScaffoldGraph)
            constructed scaffold graph
        bioactivity_map : (dict {str: float})
            dictionary containing a mapping of molecule IDs to
            a bio-activity value i.e. {MOLID: bioactivity}
        progress : (bool)
            if True show a progress bar to monitor progress
        """

        if not issubclass(type(graph), ScaffoldGraph):
            raise ValueError('Input graph must be a subclass of ScaffoldGraph')

        mapping = {k: d for k, d in bioactivity_map.items() if k in graph.nodes}

        def get_activity(scaffold):
            distribution = []
            succ = nx.bfs_tree(graph, scaffold)
            for node in succ.nodes:
                if graph.nodes[node]['type'] == 'molecule':
                    try:
                        distribution.append(mapping[node])
                    except KeyError:
                        continue
            return scaffold, distribution

        activity = (get_activity(x) for x in graph.get_scaffold_nodes())

        if self._hyp_str == 'ks':
            self._fit_ks(list(mapping.values()), activity, progress)
        elif self._hyp_str == 'binom':
            self._fit_binom(activity, progress)

        if self._bonferroni:
            hier = graph.get_hierarchy_sizes()
            for x in hier:
                hier[x] = self._crit / hier[x]
            for x in self._X.keys():
                h = graph.nodes[x]['hierarchy']
                self._X[x]['CRIT'] = hier[h]
        else:
            for x in self._X.keys():
                self._X[x]['CRIT'] = self._crit

        self.is_fit = True 
開發者ID:UCLCheminformatics,項目名稱:ScaffoldGraph,代碼行數:51,代碼來源:cse.py


注:本文中的networkx.bfs_tree方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。