本文整理匯總了Python中networkx.bfs_tree方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.bfs_tree方法的具體用法?Python networkx.bfs_tree怎麽用?Python networkx.bfs_tree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.bfs_tree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_scaffolds_for_molecule
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_scaffolds_for_molecule(self, molecule_id, data=False, default=None):
"""Return a list of scaffold SMILES connected to a query molecule ID.
Parameters
----------
molecule_id: (string) ID of query molecule.
data : (string or bool, optional (default=False)) The scaffold node attribute returned in 2-tuple
(n, dict[data]). If True, return entire scaffold node attribute dict as (n, dict).
If False, return just the scaffold nodes n.
default : (value, optional (default=None)) Value used for scaffold nodes that don’t have the
requested attribute. Only relevant if data is not True or False.
"""
scaffolds = []
if molecule_id not in self:
return scaffolds
for succ in nx.bfs_tree(self, molecule_id, reverse=True):
if self.nodes[succ].get('type') == 'scaffold':
if data is False:
scaffolds.append(succ)
elif data is True:
scaffolds.append((succ, self.nodes[succ]))
else:
scaffolds.append((succ, self.nodes[succ].get(data, default)))
return scaffolds
示例2: bfs_tree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def bfs_tree(self, graph, reverse=False):
"""BFS tree from the graph to all other reachable graphs."""
return list(nx.bfs_tree(self._graph, graph, reverse=reverse))[1:]
示例3: get_molecules_for_scaffold
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_molecules_for_scaffold(self, scaffold_smiles, data=False, default=None):
"""Return a list of molecule IDs which are represented by a scaffold in the graph.
Note: This is determined by traversing the graph. In the case of a scaffold tree
the results represent the rules used to prioritize the scaffolds.
Parameters
----------
scaffold_smiles : (string) SMILES of query scaffold.
data : (string or bool, optional (default=False)) The molecule node attribute returned in 2-tuple
(n, dict[data]). If True, return entire molecule node attribute dict as (n, dict).
If False, return just the molecule nodes n.
default : (value, optional (default=None)) Value used for molecule nodes that don’t have the
requested attribute. Only relevant if data is not True or False.
"""
molecules = []
if scaffold_smiles not in self:
scaffold_smiles = canonize_smiles(scaffold_smiles, failsafe=True)
if scaffold_smiles not in self:
return molecules
for succ in nx.bfs_tree(self, scaffold_smiles, reverse=False):
if self.nodes[succ].get('type') == 'molecule':
if data is False:
molecules.append(succ)
elif data is True:
molecules.append((succ, self.nodes[succ]))
else:
molecules.append((succ, self.nodes[succ].get(data, default)))
return molecules
示例4: get_parent_scaffolds
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_parent_scaffolds(self, scaffold_smiles, data=False, default=None, max_levels=-1):
"""Return a list of parent scaffolds for a query scaffold.
Parameters
----------
scaffold_smiles : (string) SMILES of query scaffold.
data : (string or bool, optional (default=False)) The scaffold node attribute returned in 2-tuple
(n, dict[data]). If True, return entire scaffold node attribute dict as (n, dict).
If False, return just the scaffold nodes n.
default : (value, optional (default=None)) Value used for scaffold nodes that don’t have the
requested attribute. Only relevant if data is not True or False.
max_levels : (integer, optional (default=-1)) If > 0 only return scaffolds with a hierarchy
difference to the query scaffold of max_levels.
"""
parents = []
if scaffold_smiles not in self:
scaffold_smiles = canonize_smiles(scaffold_smiles, failsafe=True)
if scaffold_smiles not in self:
return parents
level = self.nodes[scaffold_smiles].get('hierarchy', float('inf'))
bfs = iter(nx.bfs_tree(self, scaffold_smiles, reverse=True).nodes)
next(bfs) # first entry is the query node
for succ in bfs:
d = self.nodes[succ]
if d.get('type') == 'scaffold' and (max_levels < 0 or level - d.get('hierarchy', 0) <= max_levels):
if data is False:
parents.append(succ)
elif data is True:
parents.append((succ, self.nodes[succ]))
else:
parents.append((succ, self.nodes[succ].get(data, default)))
return parents
示例5: get_child_scaffolds
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_child_scaffolds(self, scaffold_smiles, data=False, default=None, max_levels=-1):
"""Return a list of child scaffolds for a query scaffold.
Parameters
----------
scaffold_smiles : (string) SMILES of query scaffold.
data : (string or bool, optional (default=False)) The scaffold node attribute returned in 2-tuple
(n, dict[data]). If True, return entire scaffold node attribute dict as (n, dict).
If False, return just the scaffold nodes n.
default : (value, optional (default=None)) Value used for scaffold nodes that don’t have the
requested attribute. Only relevant if data is not True or False.
max_levels : (integer, optional (default=-1)) If > 0 only return scaffolds with a hierarchy
difference to the query scaffold of max_levels.
"""
children = []
if scaffold_smiles not in self:
scaffold_smiles = canonize_smiles(scaffold_smiles, failsafe=True)
if scaffold_smiles not in self:
return children
level = self.nodes[scaffold_smiles].get('hierarchy', float('inf'))
bfs = iter(nx.bfs_tree(self, scaffold_smiles, reverse=False).nodes)
next(bfs) # first entry is the query node
for succ in bfs:
d = self.nodes[succ]
if d.get('type') == 'scaffold' and (max_levels < 0 or d.get('hierarchy', 0) - level <= max_levels):
if data is False:
children.append(succ)
elif data is True:
children.append((succ, self.nodes[succ]))
else:
children.append((succ, self.nodes[succ].get(data, default)))
return children
示例6: fit
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def fit(self, X, y=None):
if self.assert_tree:
assert self.root is not None
self.hierarchy = nx.bfs_tree(self.hierarchy, self.root)
return self
示例7: skeleton_to_swc
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def skeleton_to_swc(skeleton, offset, resolution):
import networkx as nx
g = nx.Graph()
g.add_nodes_from(skeleton.nodes())
g.add_edges_from((e.u, e.v) for e in skeleton.edges())
# Find a directed tree for mapping to a skeleton.
if nx.number_of_nodes(g) > 1:
# This discards cyclic edges in the graph.
t = nx.bfs_tree(nx.minimum_spanning_tree(g), g.nodes()[0])
else:
t = nx.DiGraph()
t.add_nodes_from(g)
# Copy node attributes
for n in t.nodes_iter():
loc = skeleton.locations(n)
# skeletopyze is z, y, x (as it should be).
loc = np.array(loc)
loc = np.multiply(loc + offset, resolution)
t.node[n].update({'x': loc[0],
'y': loc[1],
'z': loc[2],
'radius': skeleton.diameters(n) / 2.0})
# Set parent node ID
for n, nbrs in t.adjacency_iter():
for nbr in nbrs:
t.node[nbr]['parent_id'] = n
if 'radius' not in t.node[nbr]:
t.node[nbr]['radius'] = -1
return [[
node_id,
0,
n['x'], n['y'], n['z'],
n['radius'],
n.get('parent_id', -1)] for node_id, n in t.nodes(data=True)]
示例8: test_bfs_tree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def test_bfs_tree(self):
T = nx.bfs_tree(self.G, source=0)
assert_equal(sorted(T.nodes()), sorted(self.G.nodes()))
assert_equal(sorted(T.edges()), [(0, 1), (1, 2), (1, 3), (2, 4)])
示例9: test_bfs_tree_isolates
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def test_bfs_tree_isolates(self):
G = nx.Graph()
G.add_node(1)
G.add_node(2)
T = nx.bfs_tree(G, source=1)
assert_equal(sorted(T.nodes()), [1])
assert_equal(sorted(T.edges()), [])
示例10: bfs_test_tree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def bfs_test_tree(self):
T = nx.bfs_tree(self.G, source=3, depth_limit=1)
assert_equal(sorted(T.edges()), [(3, 2), (3, 4)])
示例11: bfs_tree
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def bfs_tree(G, source, reverse=False):
"""Return an oriented tree constructed from of a breadth-first-search
starting at source.
Parameters
----------
G : NetworkX graph
source : node
Specify starting node for breadth-first search and return edges in
the component reachable from source.
reverse : bool, optional
If True traverse a directed graph in the reverse direction
Returns
-------
T: NetworkX DiGraph
An oriented tree
Examples
--------
>>> G = nx.path_graph(3)
>>> print(list(nx.bfs_tree(G,1).edges()))
[(1, 0), (1, 2)]
Notes
-----
Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.
"""
T = nx.DiGraph()
T.add_node(source)
T.add_edges_from(bfs_edges(G, source, reverse=reverse))
return T
示例12: get_minimum_model_set
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def get_minimum_model_set(self, model):
if not isinstance(model, str):
model = model.name
return list(nx.bfs_tree(self.model_graph, model, reverse=True))
示例13: is_taint_related_to_ip
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def is_taint_related_to_ip(self, simrun_addr, stmt_idx, taint_type, simrun_whitelist=None):
"""
Query in taint graph to check if a specific taint will taint the IP in the future or not.
The taint is specified with the tuple (simrun_addr, stmt_idx, taint_type).
:param simrun_addr: Address of the SimRun.
:param stmt_idx: Statement ID.
:param taint_type: Type of the taint, might be one of the following: 'reg', 'tmp', 'mem'.
:param simrun_whitelist: A list of SimRun addresses that are whitelisted, i.e. the tainted exit will be
ignored if it is in those SimRuns.
:returns: True/False
"""
if simrun_whitelist is None:
simrun_whitelist = set()
if type(simrun_whitelist) is not set:
simrun_whitelist = set(simrun_whitelist)
# Find the specific taint in our graph
taint = None
for n in self.taint_graph.nodes():
if n.type == taint_type and n.addr == simrun_addr and n.stmt_id == stmt_idx:
taint = n
break
if taint is None:
raise AngrBackwardSlicingError('The specific taint is not found')
bfs_tree = networkx.bfs_tree(self.taint_graph, taint)
# A node is tainting the IP if one of the following criteria holds:
# - a descendant tmp variable is used as a default exit or a conditional exit of its corresponding SimRun
# - a descendant register is the IP itself
for descendant in bfs_tree.nodes():
if descendant.type == 'exit':
if descendant.addr not in simrun_whitelist:
return True
elif descendant.type == 'reg' and descendant.reg == self.project.arch.ip_offset:
return True
return False
示例14: is_taint_impacting_stack_pointers
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def is_taint_impacting_stack_pointers(self, simrun_addr, stmt_idx, taint_type, simrun_whitelist=None):
"""
Query in taint graph to check if a specific taint will taint the stack pointer in the future or not.
The taint is specified with the tuple (simrun_addr, stmt_idx, taint_type).
:param simrun_addr: Address of the SimRun.
:param stmt_idx: Statement ID.
:param taint_type: Type of the taint, might be one of the following: 'reg', 'tmp', 'mem'.
:param simrun_whitelist: A list of SimRun addresses that are whitelisted.
:returns: True/False.
"""
if simrun_whitelist is None:
simrun_whitelist = set()
if type(simrun_whitelist) is not set:
simrun_whitelist = set(simrun_whitelist)
# Find the specific taint in our graph
taint = None
for n in self.taint_graph.nodes():
if n.type == taint_type and n.addr == simrun_addr and n.stmt_id == stmt_idx:
taint = n
break
if taint is None:
raise AngrBackwardSlicingError('The specific taint is not found')
bfs_tree = networkx.bfs_tree(self.taint_graph, taint)
# A node is tainting the stack pointer if one of the following criteria holds:
# - a descendant register is the sp/bp itself
for descendant in bfs_tree.nodes():
if descendant.type == 'reg' and (
descendant.reg in (self.project.arch.sp_offset, self.project.arch.bp_offset)
):
return True
return False
#
# Private methods
#
示例15: fit
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import bfs_tree [as 別名]
def fit(self, graph, bioactivity_map, progress=True):
"""Fit CSE to a scaffold graph.
Parameters
----------
graph : (sg.ScaffoldGraph)
constructed scaffold graph
bioactivity_map : (dict {str: float})
dictionary containing a mapping of molecule IDs to
a bio-activity value i.e. {MOLID: bioactivity}
progress : (bool)
if True show a progress bar to monitor progress
"""
if not issubclass(type(graph), ScaffoldGraph):
raise ValueError('Input graph must be a subclass of ScaffoldGraph')
mapping = {k: d for k, d in bioactivity_map.items() if k in graph.nodes}
def get_activity(scaffold):
distribution = []
succ = nx.bfs_tree(graph, scaffold)
for node in succ.nodes:
if graph.nodes[node]['type'] == 'molecule':
try:
distribution.append(mapping[node])
except KeyError:
continue
return scaffold, distribution
activity = (get_activity(x) for x in graph.get_scaffold_nodes())
if self._hyp_str == 'ks':
self._fit_ks(list(mapping.values()), activity, progress)
elif self._hyp_str == 'binom':
self._fit_binom(activity, progress)
if self._bonferroni:
hier = graph.get_hierarchy_sizes()
for x in hier:
hier[x] = self._crit / hier[x]
for x in self._X.keys():
h = graph.nodes[x]['hierarchy']
self._X[x]['CRIT'] = hier[h]
else:
for x in self._X.keys():
self._X[x]['CRIT'] = self._crit
self.is_fit = True