當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.betweenness_centrality方法代碼示例

本文整理匯總了Python中networkx.betweenness_centrality方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.betweenness_centrality方法的具體用法?Python networkx.betweenness_centrality怎麽用?Python networkx.betweenness_centrality使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.betweenness_centrality方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: calc_BC

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def calc_BC(protein_graph, prefix, generate_plots=True):
    bc = nx.betweenness_centrality(protein_graph, normalized=False)
    bc = np.asarray(list(bc.values()))

    num_nodes = len(protein_graph.nodes())
    nodes_axis = range(1, num_nodes + 1)

    if generate_plots:
        plt.plot(nodes_axis, bc)
        plt.title("%s BC" % prefix, fontsize=18)
        plt.xlabel('Node Indices', fontsize=16)
        plt.ylabel('BC', fontsize=16)
        plt.savefig("%s_BC.png" % prefix, dpi=300, bbox_inches='tight')
        plt.close()

    bc = bc.reshape(1, num_nodes)
    np.savetxt("%s_bc.dat" % prefix, bc)

    return bc 
開發者ID:RUBi-ZA,項目名稱:MD-TASK,代碼行數:21,代碼來源:calc_network.py

示例2: test_florentine_families_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_florentine_families_graph(self):
        """Betweenness centrality: Florentine families graph"""
        G=nx.florentine_families_graph()
        b_answer=\
             {'Acciaiuoli':    0.000,
              'Albizzi':       0.212,
              'Barbadori':     0.093,
              'Bischeri':      0.104,
              'Castellani':    0.055,
              'Ginori':        0.000,
              'Guadagni':      0.255,
              'Lamberteschi':  0.000,
              'Medici':        0.522,
              'Pazzi':         0.000,
              'Peruzzi':       0.022,
              'Ridolfi':       0.114,
              'Salviati':      0.143,
              'Strozzi':       0.103,
              'Tornabuoni':    0.092}

        b=nx.betweenness_centrality(G,
                                             weight=None,
                                             normalized=True)
        for n in sorted(G):
            assert_almost_equal(b[n],b_answer[n],places=3) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:27,代碼來源:test_betweenness_centrality.py

示例3: test_G2

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_G2(self):
        """Weighted betweenness centrality: G2"""                   
        G=nx.DiGraph()
        G.add_weighted_edges_from([('s','u',10) ,('s','x',5) ,
                                   ('u','v',1) ,('u','x',2) ,
                                   ('v','y',1) ,('x','u',3) ,
                                   ('x','v',5) ,('x','y',2) ,
                                   ('y','s',7) ,('y','v',6)])

        b_answer={'y':5.0,'x':5.0,'s':4.0,'u':2.0,'v':2.0}

        b=nx.betweenness_centrality(G,
                                             weight='weight',
                                             normalized=False)
        for n in sorted(G):
            assert_almost_equal(b[n],b_answer[n]) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:18,代碼來源:test_betweenness_centrality.py

示例4: test_K5_endpoints

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_K5_endpoints(self):
        """Betweenness centrality: K5 endpoints"""
        G = nx.complete_graph(5)
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False,
                                      endpoints=True)
        b_answer = {0: 4.0, 1: 4.0, 2: 4.0, 3: 4.0, 4: 4.0}
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n])
        # normalized = True case
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True,
                                      endpoints=True)
        b_answer = {0: 0.4, 1: 0.4, 2: 0.4, 3: 0.4, 4: 0.4}
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n]) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:20,代碼來源:test_betweenness_centrality.py

示例5: test_P3_endpoints

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_P3_endpoints(self):
        """Betweenness centrality: P3 endpoints"""
        G = nx.path_graph(3)
        b_answer = {0: 2.0, 1: 3.0, 2: 2.0}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False,
                                      endpoints=True)
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n])
        # normalized = True case
        b_answer = {0: 2/3, 1: 1.0, 2: 2/3}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True,
                                      endpoints=True)
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n]) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:20,代碼來源:test_betweenness_centrality.py

示例6: test_florentine_families_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_florentine_families_graph(self):
        """Betweenness centrality: Florentine families graph"""
        G = nx.florentine_families_graph()
        b_answer =\
            {'Acciaiuoli':    0.000,
             'Albizzi':       0.212,
             'Barbadori':     0.093,
             'Bischeri':      0.104,
             'Castellani':    0.055,
             'Ginori':        0.000,
             'Guadagni':      0.255,
             'Lamberteschi':  0.000,
             'Medici':        0.522,
             'Pazzi':         0.000,
             'Peruzzi':       0.022,
             'Ridolfi':       0.114,
             'Salviati':      0.143,
             'Strozzi':       0.103,
             'Tornabuoni':    0.092}

        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True)
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n], places=3) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:27,代碼來源:test_betweenness_centrality.py

示例7: test_disconnected_path_endpoints

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_disconnected_path_endpoints(self):
        """Betweenness centrality: disconnected path endpoints"""
        G = nx.Graph()
        nx.add_path(G, [0, 1, 2])
        nx.add_path(G, [3, 4, 5, 6])
        b_answer = {0: 2, 1: 3, 2: 2, 3: 3, 4: 5, 5: 5, 6: 3}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False,
                                      endpoints=True)
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n])
        # normalized = True case
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True,
                                      endpoints=True)
        for n in sorted(G):
            assert_almost_equal(b[n], b_answer[n] / 21) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:21,代碼來源:test_betweenness_centrality.py

示例8: betweenness_centrality

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def betweenness_centrality(adjacency, labels=None):
    def _betweeness_centrality(adjacency, labels):
        graph = nx.from_numpy_matrix(adjacency)

        labeling = nx.betweenness_centrality(graph, normalized=False)
        labeling = list(labeling.items())
        labeling = sorted(labeling, key=lambda n: n[1], reverse=True)

        return np.array([labels[n[0]] for n in labeling])

    labels = _labels_default(labels, adjacency)
    return tf.py_func(_betweeness_centrality, [adjacency, labels], tf.int32,
                      stateful=False, name='betweenness_centrality') 
開發者ID:rusty1s,項目名稱:graph-based-image-classification,代碼行數:15,代碼來源:labeling.py

示例9: __get_centrality_pdf

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def __get_centrality_pdf(self, skew = False, smooth = False):
        """
        produces a probability distribution which is proportional to nodes betweeness centrality scores
        
        the betweeness centrality counts on how many shortest paths a node is
        connecting to thos nodes will most likely make them even more central
        however it is good for the node operating those operation as this node
        itself gets a position in the network which is close to central nodes
        
        this distribution can be skewed and smoothed
        """
        self.__logger.info(
            "CENTRALITY_PDF: Try to generate a PDF proportional to centrality scores")
        pdf = {}
        cumsum = 0
        for n, score in nx.betweenness_centrality(self.G).items():
            pdf[n] = score
            cumsum += score
            
        #renoremalize result
        pdf = {k:v/cumsum for k, v in pdf.items()}
        self.__logger.info(
            "CENTRALITY_PDF: Generated pdf")
        
        if skew and smooth:
            self.__logger.info(
            "CENTRALITY_PDF: Won't skew and smooth distribution ignore both")
            smooth = False
            skew = False
        return self.__manipulate_pdf(pdf, skew, smooth) 
開發者ID:lightningd,項目名稱:plugins,代碼行數:32,代碼來源:lib_autopilot.py

示例10: main

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def main(opts):
    df = pd.read_csv(opts['biogrid'], sep='\t')
    interact_df = df[['Official Symbol Interactor A',
                      'Official Symbol Interactor B']]
    interact_genes = interact_df.dropna().values.tolist()
    G = nx.Graph()
    G.add_edges_from(map(tuple, interact_genes))
    gene_betweeness = nx.betweenness_centrality(G)
    gene_degree = G.degree()

    result = [[key, gene_betweeness[key], gene_degree[key]]
              for key in gene_degree]
    result = [['gene', 'gene_betweeness', 'gene_degree']] + result
    with open(opts['output'], 'wb') as handle:
        csv.writer(handle, delimiter='\t').writerows(result) 
開發者ID:KarchinLab,項目名稱:2020plus,代碼行數:17,代碼來源:biogrid_network.py

示例11: get_center

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def get_center(graph: nx.Graph) -> Hashable:
    centralities = nx.betweenness_centrality(graph)
    return max(centralities, key=centralities.get) 
開發者ID:quantumlib,項目名稱:Cirq,代碼行數:5,代碼來源:initialization.py

示例12: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def __init__(self, method='degree', analyzer=NltkNormalizer().split_and_normalize):
        self.analyze = analyzer
        self.method = method
        self.methods_on_digraph = {'hits', 'pagerank', 'katz'}
        self._get_scores = {'degree': nx.degree, 'betweenness': nx.betweenness_centrality,
                            'pagerank': nx.pagerank_scipy, 'hits': self._hits, 'closeness': nx.closeness_centrality,
                            'katz': nx.katz_centrality}[method]
        # Add a new value when a new vocabulary item is seen
        self.vocabulary = defaultdict()
        self.vocabulary.default_factory = self.vocabulary.__len__ 
開發者ID:quadflor,項目名稱:Quadflor,代碼行數:12,代碼來源:graph_score_vectorizer.py

示例13: node_selection_with_1d_wl

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def node_selection_with_1d_wl(G, features, num_channel, num_sample, num_neighbor, stride):
    """construct features for cnn"""
    X = np.zeros((num_channel, num_sample, num_neighbor), dtype=np.float32)
    node2id = dict([(node, vid) for vid, node in enumerate(G.nodes())])
    id2node = dict(zip(node2id.values(), node2id.keys()))
    betweenness = nx.betweenness_centrality(G)
    sorted_nodes = sorted(betweenness.items(), key=lambda d: d[1], reverse=False)
    # obtain normalized neighbors' features for each vertex
    i = 0
    j = 0
    root_list = []
    distance_list = []
    graph_list = []
    while j < num_sample:
        if i < len(sorted_nodes):
            neighbors_dict = assemble_neighbor(G, sorted_nodes[i][0], num_neighbor, sorted_nodes)
            # construct subgraph and sort neighbors with a labeling measurement like degree centrality
            sub_g = G.subgraph(neighbors_dict.keys())
            root_list.append(sorted_nodes[i][0])
            distance_list.append(neighbors_dict)
            graph_list.append(sub_g)
        else:
            # zero receptive field
            X[:, j, :] = np.zeros((num_channel, num_neighbor), dtype=np.float32)
        i += stride
        j += 1
    init_labels = dict([(v, features[id].argmax(axis=0)) for v, id in node2id.items()])
    graph_labels_list = one_dim_wl(graph_list, init_labels)

    # finally relabel based on 1d-wl and distance to root node
    for i in range(len(root_list)):
        # set root node the first position
        graph_labels_list[i][root_list[i]] = 0
        sorted_measurement = dict([(v, [measure, distance_list[i][v]]) for v, measure in graph_labels_list[i].items()])
        sorted_neighbor = sorted(sorted_measurement.items(), key=lambda d: d[1], reverse=False)[:num_neighbor]
        reorder_dict = dict(zip(sorted(sorted_measurement.keys()), range(len(sorted_measurement))))
        X[:, i, :] = features[[reorder_dict[v] for v, measure in sorted_neighbor]].T
    return X.reshape(num_channel, num_sample * num_neighbor) 
開發者ID:THUDM,項目名稱:cogdl,代碼行數:40,代碼來源:patchy_san.py

示例14: set_node_attributes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def set_node_attributes(G, name, values):
    """Set node attributes from dictionary of nodes and values

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    values: dict
       Dictionary of attribute values keyed by node. If `values` is not a
       dictionary, then it is treated as a single attribute value that is then
       applied to every node in `G`.

    Examples
    --------
    >>> G = nx.path_graph(3)
    >>> bb = nx.betweenness_centrality(G)
    >>> nx.set_node_attributes(G, 'betweenness', bb)
    >>> G.node[1]['betweenness']
    1.0
    """
    try:
        values.items
    except AttributeError:
        # Treat `value` as the attribute value for each node.
        values = dict(zip(G.nodes(), [values] * len(G)))

    for node, value in values.items():
        G.node[node][name] = value 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:33,代碼來源:function.py

示例15: test_K5

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import betweenness_centrality [as 別名]
def test_K5(self):
        """Betweenness centrality: K5"""
        G=nx.complete_graph(5)
        b=nx.betweenness_centrality(G,
                                             weight=None,
                                             normalized=False)
        b_answer={0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
        for n in sorted(G):
            assert_almost_equal(b[n],b_answer[n]) 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:11,代碼來源:test_betweenness_centrality.py


注:本文中的networkx.betweenness_centrality方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。