當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.barbell_graph方法代碼示例

本文整理匯總了Python中networkx.barbell_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.barbell_graph方法的具體用法?Python networkx.barbell_graph怎麽用?Python networkx.barbell_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.barbell_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def main(args): 
    # print "------begin to write graph---------"
    # generate_graph_write_edgelist(args.m1,args.m2,args.input)
    print "begin to initialize transition matrix"
    trans_matrix = initialize_edge_type_matrix(args.type_size)
    print trans_matrix
    print "------begin to read graph---------" 
    G = read_graph(args.input,args.weighted,args.directed)
    # print G.edges(data=True)
    # nodes = list(G.nodes)
    # print G.number_of_edges(),nodes,[n for n in G.neighbors('3')]

    # # G=nx.barbell_graph(17,1)
    # # draw_graph(G) 
    print "------begin to simulate walk---------"
    for i in range(args.em_iteration):
        walks = simulate_walks(G,args.num_walks, args.walk_length,trans_matrix,args.directed,args.p,args.q)#M step
        print str(i), "th iteration for Upating transition matrix!"
        trans_matrix = update_trans_matrix(walks,args.type_size,args.e_step)#E step
        print "trans_matrix: ",trans_matrix
    # print walks 
    print "------finish!---------"
    np.savetxt(args.output, trans_matrix) 
開發者ID:RoyZhengGao,項目名稱:edge2vec,代碼行數:25,代碼來源:transition.py

示例2: test_to_networkx_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_to_networkx_graph(self):
        import networkx as nx
        graph = nx.barbell_graph(7, 6)

        # build a BQM
        model = dimod.BinaryQuadraticModel({v: -.1 for v in graph},
                                           {edge: -.4 for edge in graph.edges},
                                           1.3,
                                           vartype=dimod.SPIN)

        # get the graph
        BQM = model.to_networkx_graph()

        self.assertEqual(set(graph), set(BQM))
        for u, v in graph.edges:
            self.assertIn(u, BQM[v])

        for v, bias in model.linear.items():
            self.assertEqual(bias, BQM.nodes[v]['bias']) 
開發者ID:dwavesystems,項目名稱:dimod,代碼行數:21,代碼來源:test_bqm.py

示例3: barbell_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def barbell_graph(m1,m2):
    graph = nx.barbell_graph(m1,m2)
    ## for com_nc, one hot 
    #onehot_com = np.array([[1,0,0]]*m1+[[0,1,0]]*m2+[[0,0,1]]*m1)  is slower when num of nodes > 2000
    node_labels_com = np.zeros(m1*2+m2).astype(int)
    node_labels_com[m1:m1+m2] = 2
    node_labels_com[m1+m2:] = 1
    ## one hot
    onehot_com = np.zeros((m1*2+m2,3)).astype(int)
    onehot_com[np.arange(m1*2+m2), node_labels_com] = 1
    
    ## for role_nc, one hot
    node_labels_role = np.zeros(m1*2+m2).astype(int)
    p,q = divmod(m2, 2) 
    for i in range(p+1):
        node_labels_role[[m1-1+i,m1+m2-i]] = i+1
    if q:
        node_labels_role[m1+p] = p+2
    onehot_role = np.zeros((m1*2+m2,p+q+2)).astype(int)
    onehot_role[np.arange(m1*2+m2), node_labels_role] = 1

    return graph, scipy.sparse.csr_matrix(onehot_com), scipy.sparse.csr_matrix(onehot_role)

########################################################################## 
開發者ID:palash1992,項目名稱:GEM-Benchmark,代碼行數:26,代碼來源:graph_gens.py

示例4: test_typical

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_typical(self):
        graph = nx.barbell_graph(17, 8)

        edgelist = set(graph.edges())

        adj = dwave.embedding.utils.edgelist_to_adjacency(edgelist)

        # test that they're equal
        for u, v in edgelist:
            self.assertIn(u, adj)
            self.assertIn(v, adj)
            self.assertIn(u, adj[v])
            self.assertIn(v, adj[u])

        for u in adj:
            for v in adj[u]:
                self.assertTrue((u, v) in edgelist or (v, u) in edgelist)
                self.assertFalse((u, v) in edgelist and (v, u) in edgelist) 
開發者ID:dwavesystems,項目名稱:dwave-system,代碼行數:20,代碼來源:test_embedding_utils.py

示例5: test_graphs

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_graphs(self):

        H = nx.complete_graph(2)
        H.add_edge(2, 3)

        graphs = [nx.complete_graph(7),
                  dnx.chimera_graph(2, 1, 3),
                  nx.balanced_tree(5, 3),
                  nx.barbell_graph(8, 11),
                  nx.cycle_graph(5),
                  H]

        for G in graphs:
            tw, order = dnx.treewidth_branch_and_bound(G)
            self.assertEqual(dnx.elimination_order_width(G, order), tw)

            tw, order = dnx.min_width_heuristic(G)
            self.assertEqual(dnx.elimination_order_width(G, order), tw)

            tw, order = dnx.min_fill_heuristic(G)
            self.assertEqual(dnx.elimination_order_width(G, order), tw)

            tw, order = dnx.max_cardinality_heuristic(G)
            self.assertEqual(dnx.elimination_order_width(G, order), tw) 
開發者ID:dwavesystems,項目名稱:dwave_networkx,代碼行數:26,代碼來源:test_elimination_ordering.py

示例6: test_linear_ranges_specified

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_linear_ranges_specified(self):
        graph = nx.barbell_graph(4, 16)
        decision_variables = (0, 4, 3)
        feasible_configurations = {(0, 0, 1): 0.}

        spec = pm.Specification(graph, decision_variables, feasible_configurations,
                                ising_linear_ranges={v: [-v, 2] for v in graph},
                                vartype=dimod.BINARY)

        # check default energy ranges
        for v in graph:
            self.assertEqual(spec.ising_linear_ranges[v], [-v, 2])

        spec = pm.Specification(graph, decision_variables, feasible_configurations,
                                ising_linear_ranges={v: (-v, 2) for v in graph},
                                vartype=dimod.BINARY)

        # check default energy ranges
        for v in graph:
            self.assertEqual(spec.ising_linear_ranges[v], [-v, 2]) 
開發者ID:dwavesystems,項目名稱:penaltymodel,代碼行數:22,代碼來源:test_specification.py

示例7: test_quadratic_ranges_partially_specified

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_quadratic_ranges_partially_specified(self):
        graph = nx.barbell_graph(4, 16)
        decision_variables = (0, 4, 3)
        feasible_configurations = {(0, 0, 1): 0.}

        spec = pm.Specification(graph, decision_variables, feasible_configurations,
                                ising_quadratic_ranges={0: {1: [0, 1], 2: [-1, 0]}, 2: {0: [-1, 0]}},
                                vartype=dimod.BINARY)

        ising_quadratic_ranges = spec.ising_quadratic_ranges
        for u in ising_quadratic_ranges:
            for v in ising_quadratic_ranges[u]:
                self.assertIs(ising_quadratic_ranges[u][v], ising_quadratic_ranges[v][u])
        for u, v in graph.edges:
            self.assertIn(v, ising_quadratic_ranges[u])
            self.assertIn(u, ising_quadratic_ranges[v])

        self.assertEqual(ising_quadratic_ranges[0][1], [0, 1]) 
開發者ID:dwavesystems,項目名稱:penaltymodel,代碼行數:20,代碼來源:test_specification.py

示例8: test_clique_removal

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_clique_removal():
    graph = nx.complete_graph(10)
    i, cs = apxa.clique_removal(graph)
    idens = nx.density(graph.subgraph(i))
    eq_(idens, 0.0, "i-set not found by clique_removal!")
    for clique in cs:
        cdens = nx.density(graph.subgraph(clique))
        eq_(cdens, 1.0, "clique not found by clique_removal!")

    graph = nx.trivial_graph(nx.Graph())
    i, cs = apxa.clique_removal(graph)
    idens = nx.density(graph.subgraph(i))
    eq_(idens, 0.0, "i-set not found by ramsey!")
    # we should only have 1-cliques. Just singleton nodes.
    for clique in cs:
        cdens = nx.density(graph.subgraph(clique))
        eq_(cdens, 0.0, "clique not found by clique_removal!")

    graph = nx.barbell_graph(10, 5, nx.Graph())
    i, cs = apxa.clique_removal(graph)
    idens = nx.density(graph.subgraph(i))
    eq_(idens, 0.0, "i-set not found by ramsey!")
    for clique in cs:
        cdens = nx.density(graph.subgraph(clique))
        eq_(cdens, 1.0, "clique not found by clique_removal!") 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:27,代碼來源:test_clique.py

示例9: test_ramsey

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_ramsey():
    # this should only find the complete graph
    graph = nx.complete_graph(10)
    c, i = apxa.ramsey_R2(graph)
    cdens = nx.density(graph.subgraph(c))
    eq_(cdens, 1.0, "clique not found by ramsey!")
    idens = nx.density(graph.subgraph(i))
    eq_(idens, 0.0, "i-set not found by ramsey!")

    # this trival graph has no cliques. should just find i-sets
    graph = nx.trivial_graph(nx.Graph())
    c, i = apxa.ramsey_R2(graph)
    cdens = nx.density(graph.subgraph(c))
    eq_(cdens, 0.0, "clique not found by ramsey!")
    idens = nx.density(graph.subgraph(i))
    eq_(idens, 0.0, "i-set not found by ramsey!")

    graph = nx.barbell_graph(10, 5, nx.Graph())
    c, i = apxa.ramsey_R2(graph)
    cdens = nx.density(graph.subgraph(c))
    eq_(cdens, 1.0, "clique not found by ramsey!")
    idens = nx.density(graph.subgraph(i))
    eq_(idens, 0.0, "i-set not found by ramsey!") 
開發者ID:SpaceGroupUCL,項目名稱:qgisSpaceSyntaxToolkit,代碼行數:25,代碼來源:test_ramsey.py

示例10: test_disconnected_graph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_disconnected_graph(self):
        """Test for a graph with multiple connected components."""
        G = nx.barbell_graph(3, 0)
        H = nx.barbell_graph(3, 0)
        mapping = dict(zip(range(6), 'abcdef'))
        nx.relabel_nodes(H, mapping, copy=False)
        G = nx.union(G, H)
        chains = list(nx.chain_decomposition(G))
        expected = [
            [(0, 1), (1, 2), (2, 0)],
            [(3, 4), (4, 5), (5, 3)],
            [('a', 'b'), ('b', 'c'), ('c', 'a')],
            [('d', 'e'), ('e', 'f'), ('f', 'd')],
        ]
        self.assertEqual(len(chains), len(expected))
        for chain in chains:
            self.assertContainsChain(chain, expected) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:19,代碼來源:test_chains.py

示例11: test_barbell

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_barbell():
    G = nx.barbell_graph(8, 4)
    nx.add_path(G, [7, 20, 21, 22])
    nx.add_cycle(G, [22, 23, 24, 25])
    pts = set(nx.articulation_points(G))
    assert_equal(pts, {7, 8, 9, 10, 11, 12, 20, 21, 22})

    answer = [
        {12, 13, 14, 15, 16, 17, 18, 19},
        {0, 1, 2, 3, 4, 5, 6, 7},
        {22, 23, 24, 25},
        {11, 12},
        {10, 11},
        {9, 10},
        {8, 9},
        {7, 8},
        {21, 22},
        {20, 21},
        {7, 20},
    ]
    assert_components_equal(list(nx.biconnected_components(G)), answer)

    G.add_edge(2, 17)
    pts = set(nx.articulation_points(G))
    assert_equal(pts, {7, 20, 21, 22}) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:27,代碼來源:test_biconnected.py

示例12: test_grow_maximal

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_grow_maximal(self, dim):
        """Test if function grows to expected maximal graph and then stops. The chosen graph is
        composed of two fully connected graphs joined together at one node. Starting from the
        first node, ``grow`` is expected to grow to be the first fully connected graph."""
        graph = nx.barbell_graph(dim, 0)
        s = [0]
        assert set(clique.grow(s, graph)) == set(range(dim)) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:9,代碼來源:test_clique.py

示例13: test_bad_node_select

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_bad_node_select(self, dim):
        """Tests if function raises a ``ValueError`` when input an invalid ``node_select``
        argument"""
        graph = nx.barbell_graph(dim, 0)
        s = [0]
        with pytest.raises(ValueError, match="Node selection method not recognized"):
            clique.grow(s, graph, node_select="") 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:9,代碼來源:test_clique.py

示例14: test_weight_based_ties

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def test_weight_based_ties(self, dim):
        """Test that the function returns the correct clique when using weight-based node
        selection to settle ties. The starting graph is a barbell graph and the subgraph is taken
        to be the whole graph. The weights of the first clique in the barbell are set to be less
        than the weights of the second, so that we expect the function to return the second
        clique."""
        graph = nx.barbell_graph(dim, 0)
        subgraph = graph.nodes()
        weights = [1] * dim + [2] * dim

        c = clique.shrink(subgraph, graph, node_select=weights)
        assert c == list(range(dim, 2 * dim)) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:14,代碼來源:test_clique.py

示例15: is_k_edge_connected

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barbell_graph [as 別名]
def is_k_edge_connected(G, k):
    """
    Tests to see if a graph is k-edge-connected

    See Also
    --------
    is_locally_k_edge_connected

    Example
    -------
    >>> G = nx.barbell_graph(10, 0)
    >>> is_k_edge_connected(G, k=1)
    True
    >>> is_k_edge_connected(G, k=2)
    False
    """
    if k < 1:
        raise ValueError('k must be positive, not {}'.format(k))
    # First try to quickly determine if G is not k-edge-connected
    if G.number_of_nodes() < k + 1:
        return False
    elif any(d < k for n, d in G.degree()):
        return False
    else:
        # Otherwise perform the full check
        if k == 1:
            return nx.is_connected(G)
        elif k == 2:
            return not nx.has_bridges(G)
        else:
            # return nx.edge_connectivity(G, cutoff=k) >= k
            return nx.edge_connectivity(G) >= k 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:34,代碼來源:nx_edge_augmentation.py


注:本文中的networkx.barbell_graph方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。