本文整理匯總了Python中networkx.barabasi_albert_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.barabasi_albert_graph方法的具體用法?Python networkx.barabasi_albert_graph怎麽用?Python networkx.barabasi_albert_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.barabasi_albert_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_eva
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_eva(self):
l1 = ['one', 'two', 'three', 'four']
l2 = ["A", "B", "C"]
g = nx.barabasi_albert_graph(100, 5)
labels = dict()
for node in g.nodes():
labels[node] = {"l1": random.choice(l1), "l2": random.choice(l2)}
coms = algorithms.eva(g, labels, alpha=0.5)
self.assertEqual(type(coms.communities), list)
if len(coms.communities) > 0:
self.assertEqual(type(coms.communities[0]), list)
self.assertEqual(type(coms.communities[0][0]), int)
示例2: generate_scalefree_graph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def generate_scalefree_graph(variables_count, m_edge, allow_subgraph):
if not allow_subgraph:
graph = nx.barabasi_albert_graph(variables_count, m_edge)
is_connected = nx.is_connected(graph)
while not is_connected:
graph = nx.barabasi_albert_graph(variables_count, m_edge)
is_connected = nx.is_connected(graph)
else:
graph = nx.barabasi_albert_graph(variables_count, m_edge)
# In the obtained graph, low rank nodes will have a much higher edge count
# than high rank nodes. We shuffle the nodes names to avoid this effect:
new_nodes = list(range(variables_count))
random.shuffle(new_nodes)
node_mapping = {n: nn for n, nn in zip(graph.nodes, new_nodes)}
new_graph = nx.Graph((node_mapping[e1], node_mapping[e2]) for e1, e2 in graph.edges)
return new_graph
示例3: ba
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def ba(start, width, role_start=0, m=5):
"""Builds a BA preferential attachment graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
width : int size of the graph
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.barabasi_albert_graph(width, m)
graph.add_nodes_from(range(start, start + width))
nids = sorted(graph)
mapping = {nid: start + i for i, nid in enumerate(nids)}
graph = nx.relabel_nodes(graph, mapping)
roles = [role_start for i in range(width)]
return graph, roles
示例4: test_quantum_jsd
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_quantum_jsd():
"""Run the above tests again using the collision entropy instead of the
Von Neumann entropy to ensure that all the logic of the JSD implementation
is tested.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="JSD is only a metric for 0 ≤ q < 2.")
JSD = distance.QuantumJSD()
G = nx.karate_club_graph()
dist = JSD.dist(G, G, beta=0.1, q=2)
assert np.isclose(dist, 0.0)
G1 = nx.fast_gnp_random_graph(100, 0.3)
G2 = nx.barabasi_albert_graph(100, 5)
dist = JSD.dist(G1, G2, beta=0.1, q=2)
assert dist > 0.0
G1 = nx.barabasi_albert_graph(100, 4)
G2 = nx.fast_gnp_random_graph(100, 0.3)
dist1 = JSD.dist(G1, G2, beta=0.1, q=2)
dist2 = JSD.dist(G2, G1, beta=0.1, q=2)
assert np.isclose(dist1, dist2)
示例5: test_purity
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_purity(self):
l1 = ['one', 'two', 'three', 'four']
l2 = ["A", "B", "C"]
g_attr = nx.barabasi_albert_graph(100, 5)
labels = dict()
for node in g_attr.nodes():
labels[node] = {"l1": random.choice(l1), "l2": random.choice(l2)}
coms = eva(g_attr, labels, alpha=0.8)
pur = evaluation.purity(coms)
self.assertGreaterEqual(pur.score, 0)
self.assertLessEqual(pur.score, 1)
示例6: test_ilouvain
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_ilouvain(self):
l1 = [0.1, 0.4, 0.5]
l2 = [34, 3, 112]
g = nx.barabasi_albert_graph(100, 5)
labels = dict()
for node in g.nodes():
labels[node] = {"l1": random.choice(l1), "l2": random.choice(l2)}
id = dict()
for n in g.nodes():
id[n] = n
coms = algorithms.ilouvain(g, labels, id)
self.assertEqual(type(coms.communities), list)
示例7: powerlaw_cluster_generator
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def powerlaw_cluster_generator(_n, _edge_factor):
edges = nx.barabasi_albert_graph(_n, _edge_factor, seed=0).edges() # Undirected edges
# Swap the direction of half edges to diffuse degree
di_edges = [(edges[i][0], edges[i][1]) if i % 2 == 0 else (edges[i][1], edges[i][0]) for i in range(len(edges))]
_g = nx.DiGraph()
_g.add_edges_from(di_edges) # Create a directed graph
return _g
示例8: test_perturbed
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_perturbed():
graphs = []
for i in range(100,101):
for j in range(4,5):
for k in range(500):
graphs.append(nx.barabasi_albert_graph(i,j))
g_perturbed = perturb(graphs, 0.9)
print([g.number_of_edges() for g in graphs])
print([g.number_of_edges() for g in g_perturbed])
示例9: gen_ba
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def gen_ba(n_range, m_range, num_graphs, feature_generator=None):
graphs = []
for i in np.random.choice(n_range, num_graphs):
for j in np.random.choice(m_range, 1):
graphs.append(nx.barabasi_albert_graph(i,j))
if feature_generator is None:
feature_generator = ConstFeatureGen(0)
for G in graphs:
feature_generator.gen_node_features(G)
return graphs
示例10: test_different_graphs
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_different_graphs():
""" The distance between two different graphs must be nonzero."""
## NOTE: This test is not totally rigorous. For example, two different
## networks may have the same eigenvalues, thus a method that compares
## their eigenvalues would result in distance 0. However, this is very
## unlikely in the constructed case, so we rely on it for now.
G1 = nx.fast_gnp_random_graph(100, 0.3)
G2 = nx.barabasi_albert_graph(100, 5)
for obj in distance.__dict__.values():
if isinstance(obj, type) and BaseDistance in obj.__bases__:
dist = obj().dist(G1, G2)
assert dist > 0.0
示例11: test_symmetry
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_symmetry():
"""The distance between two graphs must be symmetric."""
G1 = nx.barabasi_albert_graph(100, 4)
G2 = nx.fast_gnp_random_graph(100, 0.3)
for label, obj in distance.__dict__.items():
if isinstance(obj, type) and BaseDistance in obj.__bases__:
dist1 = obj().dist(G1, G2)
dist2 = obj().dist(G2, G1)
assert np.isclose(dist1, dist2)
示例12: purity
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def purity(communities):
"""Purity is the product of the frequencies of the most frequent labels carried by the nodes within the communities
:param communities: AttrNodeClustering object
:return: FitnessResult object
Example:
>>> from cdlib.algorithms import eva
>>> from cdlib import evaluation
>>> import random
>>> l1 = ['A', 'B', 'C', 'D']
>>> l2 = ["E", "F", "G"]
>>> g = nx.barabasi_albert_graph(100, 5)
>>> labels=dict()
>>> for node in g.nodes():
>>> labels[node]={"l1":random.choice(l1), "l2":random.choice(l2)}
>>> communities = eva(g_attr, labels, alpha=0.5)
>>> pur = evaluation.purity(communities)
:References:
1. Citraro, Salvatore, and Giulio Rossetti. "Eva: Attribute-Aware Network Segmentation." International Conference on Complex Networks and Their Applications. Springer, Cham, 2019.
"""
pur = Eva.purity(communities.coms_labels)
return FitnessResult(score=pur)
示例13: test_valid_degree_sequence2
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_valid_degree_sequence2():
n = 100
for i in range(10):
G = nx.barabasi_albert_graph(n,1)
deg = list(G.degree().values())
assert_true( nx.is_valid_degree_sequence(deg, method='eg') )
assert_true( nx.is_valid_degree_sequence(deg, method='hh') )
示例14: test_valid_degree_sequence2
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def test_valid_degree_sequence2():
n = 100
for i in range(10):
G = nx.barabasi_albert_graph(n, 1)
deg = (d for n, d in G.degree())
assert_true(nx.is_graphical(deg, method='eg'))
assert_true(nx.is_graphical(deg, method='hh'))
示例15: generate_powerlaw_var_constraints
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import barabasi_albert_graph [as 別名]
def generate_powerlaw_var_constraints(
num_var: int, domain_size: int, constraint_range: int
) -> Tuple[Dict[str, Variable], Dict[str, Constraint], Domain]:
"""
Generate variables and constraints for a power-law based constraints
graph.
All constraints are binary and the graph is generated using the Barabasi
Albert method.
Parameters
----------
num_var: int
number of variables
domain_size: int
size of the domain of the variables
constraint_range: int
range in which constraints take their value (uniform random value of
ech possible assignment).
Returns
-------
A tuple with variables, constraints and domain.
"""
# Use a barabasi powerlaw based constraints graph
graph = nx.barabasi_albert_graph(num_var, 2)
# import matplotlib.pyplot as plt
# plt.subplot(121)
# nx.draw(graph) # default spring_layout
# plt.show()
domain = Domain("d", "d", range(domain_size))
variables = {}
for n in graph.nodes:
v = Variable(var_name(n), domain)
variables[v.name] = v
logger.debug("Create var for node %s : %s", n, v)
constraints = {}
for i, (n1, n2) in enumerate(graph.edges):
v1 = variables[var_name(n1)]
v2 = variables[var_name(n2)]
values = random_assignment_matrix([v1, v2], range(constraint_range))
c = NAryMatrixRelation([v1, v2], values, name=c_name(n1, n2))
logger.debug("Create constraints for edge (%s, %s) : %s", v1, v2, c)
constraints[c.name] = c
logger.info(
"Generates %s variables and %s constraints in a powerlaw" "network",
len(variables),
len(constraints),
)
return variables, constraints, domain