當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.ancestors方法代碼示例

本文整理匯總了Python中networkx.ancestors方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.ancestors方法的具體用法?Python networkx.ancestors怎麽用?Python networkx.ancestors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.ancestors方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ready_to_schedule_operation

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def ready_to_schedule_operation(op, has_executed, graph):
    """
    Determines if a Operation is ready to be scheduled for execution based on
    what has already been executed.

    Args:
        op:
            The Operation object to check
        has_executed: set
            A set containing all operations that have been executed so far
        graph:
            The networkx graph containing the operations and data nodes
    Returns:
        A boolean indicating whether the operation may be scheduled for
        execution based on what has already been executed.
    """
    dependencies = set(filter(lambda v: isinstance(v, Operation),
                              nx.ancestors(graph, op)))
    return dependencies.issubset(has_executed) 
開發者ID:yahoo,項目名稱:graphkit,代碼行數:21,代碼來源:network.py

示例2: calculate_mrcas

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def calculate_mrcas(self, c1 : ClassId, c2 : ClassId) -> Set[ClassId]:
        """
        Calculate the MRCA for a class pair
        """
        G = self.G
        # reflexive ancestors
        ancs1 = self._ancestors(c1) | {c1}
        ancs2 = self._ancestors(c2) | {c2}
        common_ancestors = ancs1 & ancs2
        redundant = set()
        for a in common_ancestors:
            redundant = redundant | nx.ancestors(G, a)
        return common_ancestors - redundant

    #def calculate_mrcas_ic(self, c1 : ClassId, c2 : ClassId) -> InformationContent, Set[ClassId]:
    #    mrcas = self.calculate_mrcas(c1, c2) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:18,代碼來源:semsearch.py

示例3: get_common_causes

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def get_common_causes(self, nodes1, nodes2):
        """
        Assume that nodes1 causes nodes2 (e.g., nodes1 are the treatments and nodes2 are the outcomes)
        """
        # TODO Refactor to remove this from here and only implement this logic in causalIdentifier. Unnecessary assumption of nodes1 to be causing nodes2.
        nodes1 = parse_state(nodes1)
        nodes2 = parse_state(nodes2)
        causes_1 = set()
        causes_2 = set()
        for node in nodes1:
            causes_1 = causes_1.union(self.get_ancestors(node))
        for node in nodes2:
            # Cannot simply compute ancestors, since that will also include nodes1 and its parents (e.g. instruments)
            parents_2 = self.get_parents(node)
            for parent in parents_2:
                if parent not in nodes1:
                    causes_2 = causes_2.union(set([parent,]))
                    causes_2 = causes_2.union(self.get_ancestors(parent))
        return list(causes_1.intersection(causes_2)) 
開發者ID:microsoft,項目名稱:dowhy,代碼行數:21,代碼來源:causal_graph.py

示例4: apply

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def apply(self, recipe: Recipe) -> None:
        pending_deps = [
            dep for dep in nx.ancestors(self.dag, recipe)
            if dep.is_modified()
        ]
        if pending_deps:
            msg =  ", ".join(str(x) for x in pending_deps)
            raise self.DependencyPending(recipe, msg) 
開發者ID:bioconda,項目名稱:bioconda-utils,代碼行數:10,代碼來源:autobump.py

示例5: filter_recipe_dag

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def filter_recipe_dag(dag, include, exclude):
    """Reduces **dag** to packages in **names** and their requirements"""
    nodes = set()
    for recipe in dag:
        if (recipe not in nodes
            and any(fnmatch(recipe.reldir, p) for p in include)
            and not any(fnmatch(recipe.reldir, p) for p in exclude)):
            nodes.add(recipe)
            nodes |= nx.ancestors(dag, recipe)
    return nx.subgraph(dag, nodes) 
開發者ID:bioconda,項目名稱:bioconda-utils,代碼行數:12,代碼來源:graph.py

示例6: filter

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def filter(dag, packages):
    nodes = set()
    for package in packages:
        if package in nodes:
            continue  # already got all ancestors
        nodes.add(package)
        try:
            nodes |= nx.ancestors(dag, package)
        except nx.exception.NetworkXError:
            if package not in nx.nodes(dag):
                logger.error("Can't find %s in dag", package)
            else:
                raise

    return nx.subgraph(dag, nodes) 
開發者ID:bioconda,項目名稱:bioconda-utils,代碼行數:17,代碼來源:graph.py

示例7: _lowest_common_anscestor

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def _lowest_common_anscestor(T, u, v, root):
    # Find a least common anscestors
    v_branch = nx.ancestors(T, v).union({v})
    u_branch = nx.ancestors(T, u).union({u})
    common = v_branch & u_branch
    if len(common) == 0:
        lca = None
    else:
        lca = max(
            (nx.shortest_path_length(T, root, c), c)
            for c in common
        )[1]
    return lca 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:15,代碼來源:nx_edge_augmentation.py

示例8: OnClick

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def OnClick(self, node_id):
        self.color_nodes()
        self._current_node_id = node_id
        node_ea = self[node_id]

        self._remove_target_handler.unregister()
        self._disable_source_handler.unregister()
        self._enable_source_handler.unregister()

        if node_ea in self._targets:
            self._remove_target_handler.register()
            self._attach_to_popup(self._remove_target_handler.get_name())

            for ea in nx.ancestors(self._lca_graph, node_ea):
                if ea not in self._targets and ea not in self._sources:
                    self._set_node_bg_color(self._node_ids[ea], COLOR_PATH)

        if node_ea in self._sources:
            if node_ea in self._disabled_sources:
                self._enable_source_handler.register()
                self._attach_to_popup(self._enable_source_handler.get_name())
            else:
                self._disable_source_handler.register()
                self._attach_to_popup(self._disable_source_handler.get_name())

                for ea in nx.descendants(self._lca_graph, node_ea):
                    if ea not in self._targets and ea not in self._sources:
                        self._set_node_bg_color(self._node_ids[ea], COLOR_PATH)

        return False 
開發者ID:tmr232,項目名稱:Sark,代碼行數:32,代碼來源:lca.py

示例9: lca_viewer_starter

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def lca_viewer_starter(lca_plugin):
    class LCAViewerStarter(sark.ui.ActionHandler):
        TEXT = "LCA Graph"
        TOOLTIP = "Show an interactive lowest-common-ancestors graph."

        def _activate(self, ctx):
            lca_plugin.show_graph()

    return LCAViewerStarter 
開發者ID:tmr232,項目名稱:Sark,代碼行數:11,代碼來源:lca.py

示例10: verify_nx_for_tutorial_algorithms

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def verify_nx_for_tutorial_algorithms(self, tree, g):
        # traversing upwards
        for u in tree.leaves():
            path = []
            v = u
            while v != tskit.NULL:
                path.append(v)
                v = tree.parent(v)

            self.assertSetEqual(set(path), {u} | nx.ancestors(g, u))
            self.assertEqual(
                path,
                [u] + [n1 for n1, n2, _ in nx.edge_dfs(g, u, orientation="reverse")],
            )

        # traversals with information
        def preorder_dist(tree, root):
            stack = [(root, 0)]
            while len(stack) > 0:
                u, distance = stack.pop()
                yield u, distance
                for v in tree.children(u):
                    stack.append((v, distance + 1))

        for root in tree.roots:
            self.assertDictEqual(
                {k: v for k, v in preorder_dist(tree, root)},
                nx.shortest_path_length(g, source=root),
            )

        for root in tree.roots:
            # new traversal: measuring time between root and MRCA
            for u, v in itertools.combinations(nx.descendants(g, root), 2):
                mrca = tree.mrca(u, v)
                tmrca = tree.time(mrca)
                self.assertAlmostEqual(
                    tree.time(root) - tmrca,
                    nx.shortest_path_length(
                        g, source=root, target=mrca, weight="branch_length"
                    ),
                ) 
開發者ID:tskit-dev,項目名稱:tskit,代碼行數:43,代碼來源:test_highlevel.py

示例11: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def __init__(self, assocmodel=None):
        self.assocmodel = assocmodel # type: AssociationSet
        self.assoc_df = assocmodel.as_dataframe()
        # TODO: test for cyclicity
        self.G = assocmodel.ontology.get_graph()
        self.ics = None # Optional
        # TODO: class x class df
        self.ancmap = {}
        for c in self.G.nodes():
            self.ancmap[c] = nx.ancestors(self.G, c) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:12,代碼來源:semsearch.py

示例12: filter_redundant

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def filter_redundant(self, ids):
        """
        Return all non-redundant ids from a list
        """
        sids = set(ids)
        for id in ids:
            sids = sids.difference(self.ancestors(id, reflexive=False))
        return sids 
開發者ID:biolink,項目名稱:ontobio,代碼行數:10,代碼來源:ontol.py

示例13: ancestors

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def ancestors(self, node, relations=None, reflexive=False):
        """Return all ancestors of specified node.

        The default implementation is to use networkx, but some
        implementations of the Ontology class may use a database or
        service backed implementation, for large graphs.

        Arguments
        ---------
        node : str
            identifier for node in ontology
        reflexive : bool
            if true, return query node in graph
        relations : list
             relation (object property) IDs used to filter

        Returns
        -------
        list[str]
            ancestor node IDs

        """
        seen = set()
        nextnodes = [node]
        while len(nextnodes) > 0:
            nn = nextnodes.pop()
            if not nn in seen:
                seen.add(nn)
                nextnodes += self.parents(nn, relations=relations)
        if not reflexive:
            seen -= {node}
        return list(seen) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:34,代碼來源:ontol.py

示例14: _blanket

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def _blanket(self, nid):
        nodes = set()
        for ont in self.id_to_ontology_map[nid]:
            nodes.update(ont.ancestors(nid))
            nodes.update(ont.descendants(nid))
        return list(nodes) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:8,代碼來源:lexmap.py

示例15: test_lexmap_multi

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import ancestors [as 別名]
def test_lexmap_multi():
    """
    Text lexical mapping
    """
    factory = OntologyFactory()
    print("Creating ont")
    files = ['x','m','h','bto']
    onts = [factory.create('tests/resources/autopod-{}.json'.format(f)) for f in files]
    lexmap = LexicalMapEngine()
    lexmap.index_ontologies(onts)
    #print(lexmap.lmap)
    #print(ont.all_synonyms())
    g = lexmap.get_xref_graph()
    for x in g.nodes():
        print("{} --> {}".format(x,lexmap.grouped_mappings(x)))
    for (x,y,d) in g.edges(data=True):
        cl = nx.ancestors(g,x)
        print("{} '{}' <-> {} '{}' :: {} CLOSURE={}".format(x,lexmap.label(x),y,lexmap.label(y),d,len(cl)))
        cpr = d[lexmap.CONDITIONAL_PR]
        assert cpr > 0 and cpr <= 1.0
    unmapped = lexmap.unmapped_nodes(g)
    print('U: {}'.format(len(unmapped)))
    unmapped = lexmap.unmapped_nodes(g, rs_threshold=4)
    print('U4: {}'.format(len(unmapped)))

    cliques = lexmap.cliques(g)
    maxc = max(cliques, key=len)
    print('CLIQUES: {}'.format(cliques))
    print('MAX CLIQUES: {}'.format(maxc))
    df = lexmap.as_dataframe(g)
    print(df.to_csv(sep="\t")) 
開發者ID:biolink,項目名稱:ontobio,代碼行數:33,代碼來源:test_lexmap_local.py


注:本文中的networkx.ancestors方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。