當前位置: 首頁>>代碼示例>>Python>>正文


Python networkx.adjacency_matrix方法代碼示例

本文整理匯總了Python中networkx.adjacency_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.adjacency_matrix方法的具體用法?Python networkx.adjacency_matrix怎麽用?Python networkx.adjacency_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在networkx的用法示例。


在下文中一共展示了networkx.adjacency_matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _fit

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def _fit(self):

        # Versions using sparse matrices
        # adj = nx.adjacency_matrix(self._G)
        # ident = sparse.identity(len(self._G.nodes)).tocsc()
        # sim = inv(ident - adj.multiply(self.beta).T) - ident
        # adj = nx.adjacency_matrix(self._G)
        # aux = adj.multiply(-self.beta).T
        # aux.setdiag(1+aux.diagonal(), k=0)
        # sim = inv(aux)
        # sim.setdiag(sim.diagonal()-1)
        # print(sim.nnz)
        # print(adj.nnz)

        # Version using dense matrices
        adj = nx.adjacency_matrix(self._G)
        aux = adj.T.multiply(-self.beta).todense()
        np.fill_diagonal(aux, 1+aux.diagonal())
        sim = np.linalg.inv(aux)
        np.fill_diagonal(sim, sim.diagonal()-1)
        return sim 
開發者ID:Dru-Mara,項目名稱:EvalNE,代碼行數:23,代碼來源:katz.py

示例2: __getitem__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def __getitem__(self, item):
    """
    Returns an rdkit mol object
    :param item:
    :return:
    """
    smiles = self.df['smiles'][item]
    mol = Chem.MolFromSmiles(smiles)
    return mol

# # TESTS
# path = 'gdb13.rand1M.smi.gz'
# dataset = gdb_dataset(path)
#
# print(len(dataset))
# mol,_ = dataset[0]
# graph = mol_to_nx(mol)
# graph_sub = graph.subgraph([0,3,5,7,9])
# graph_sub_new = nx.convert_node_labels_to_integers(graph_sub,label_attribute='old')
# graph_sub_node = graph_sub.nodes()
# graph_sub_new_node = graph_sub_new.nodes()
# matrix = nx.adjacency_matrix(graph_sub)
# np_matrix = matrix.toarray()
# print(np_matrix)
# print('end') 
開發者ID:bowenliu16,項目名稱:rl_graph_generation,代碼行數:27,代碼來源:dataset_utils.py

示例3: _update_embedding

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def _update_embedding(self, graph, original_embedding):
        r"""Performs the Network Embedding Update on the original embedding.
        Args:
            original_embedding (Numpy array): An array containing an embedding.
            graph (NetworkX graph): The embedded graph.

        Return types:
            embedding (Numpy array): An array containing the updated embedding.
        """
        embedding = self._normalize_embedding(original_embedding)
        adjacency = nx.adjacency_matrix(graph, nodelist=range(graph.number_of_nodes()))
        normalized_adjacency = normalize(adjacency, norm='l1', axis=1)
        for _ in range(self.iterations):
            embedding = (embedding + 
                         self.L1*(normalized_adjacency @ embedding) + 
                         self.L2*(normalized_adjacency @ (normalized_adjacency @ embedding)))
        return embedding 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:19,代碼來源:neu.py

示例4: fit

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def fit(self, graph):
        """
        Fitting a GraphWave model.

        Arg types:
            * **graph** *(NetworkX graph)* - The graph to be embedded.
        """
        self._set_seed()
        self._check_graph(graph)
        graph.remove_edges_from(nx.selfloop_edges(graph))
        self._create_evaluation_points()
        self._check_size(graph)
        self._G = pygsp.graphs.Graph(nx.adjacency_matrix(graph))

        if self.mechanism == "exact":
            self._exact_structural_wavelet_embedding()
        elif self.mechanism == "approximate":
            self._approximate_structural_wavelet_embedding()
        else:
            raise NameError("Unknown method.") 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:22,代碼來源:graphwave.py

示例5: fit

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def fit(self, graph):
        """
        Fitting a NodeSketch model.

        Arg types:
            * **graph** *(NetworkX graph)* - The graph to be embedded.
        """
        self._set_seed()
        self._check_graph(graph)
        self._graph = graph
        self._num_nodes = len(graph.nodes)
        self._hash_values = self._generate_hash_values()
        self._sla = nx.adjacency_matrix(self._graph, nodelist=range(self._num_nodes)).tocoo()
        self._sla.data = np.array([1 for _ in range(len(self._sla.data))])
        self._sla_original = self._sla.copy()
        self._do_single_sketch()
        for _ in range(self.iterations-1):
            self._augment_sla()
            self._do_single_sketch() 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:21,代碼來源:nodesketch.py

示例6: _create_target_matrix

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def _create_target_matrix(self, graph):
        """
        Creating a normalized sparse adjacency matrix power target.

        Arg types:
            * **graph** *(NetworkX graph)* - The graph to be embedded.

        Return types:
            * **A_tilde** *(Scipy COO matrix) - The target matrix.
        """
        weighted_graph = nx.Graph()
        for (u, v) in graph.edges():
            weighted_graph.add_edge(u, v, weight=1.0/graph.degree(u))
            weighted_graph.add_edge(v, u, weight=1.0/graph.degree(v))
        A_hat = nx.adjacency_matrix(weighted_graph,
                                    nodelist=range(graph.number_of_nodes()))

        A_tilde = A_hat.dot(A_hat)
        return coo_matrix(A_tilde) 
開發者ID:benedekrozemberczki,項目名稱:karateclub,代碼行數:21,代碼來源:tadw.py

示例7: train

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def train(self, G):
        self.num_node = G.number_of_nodes()

        self.matrix0 = sp.csr_matrix(nx.adjacency_matrix(G))

        t_1 = time.time()
        features_matrix = self._pre_factorization(self.matrix0, self.matrix0)
        t_2 = time.time()

        embeddings_matrix = self._chebyshev_gaussian(
            self.matrix0, features_matrix, self.step, self.mu, self.theta
        )
        t_3 = time.time()

        print("sparse NE time", t_2 - t_1)
        print("spectral Pro time", t_3 - t_2)
        self.embeddings = embeddings_matrix

        return self.embeddings 
開發者ID:imsheridan,項目名稱:CogDL-TensorFlow,代碼行數:21,代碼來源:prone.py

示例8: calculate_edge_lengths

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def calculate_edge_lengths(G, verbose=True):

    # Calculate the lengths of the edges

    if verbose:
        print('Calculating edge lengths...')

    x = np.matrix(G.nodes.data('x'))[:, 1]
    y = np.matrix(G.nodes.data('y'))[:, 1]

    node_coordinates = np.concatenate([x, y], axis=1)
    node_distances = squareform(pdist(node_coordinates, 'euclidean'))

    adjacency_matrix = np.array(nx.adjacency_matrix(G).todense())
    adjacency_matrix = adjacency_matrix.astype('float')
    adjacency_matrix[adjacency_matrix == 0] = np.nan

    edge_lengths = np.multiply(node_distances, adjacency_matrix)

    edge_attr_dict = {index: v for index, v in np.ndenumerate(edge_lengths) if ~np.isnan(v)}
    nx.set_edge_attributes(G, edge_attr_dict, 'length')

    return G 
開發者ID:baryshnikova-lab,項目名稱:safepy,代碼行數:25,代碼來源:safe_io.py

示例9: compute_feature_smoothness

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def compute_feature_smoothness(path, times=0):
    G_org = json_graph.node_link_graph(json.load(open(path+'-G.json')))
    # G_org = remove_unlabeled(G_org)
    if nx.is_directed(G_org):
        G_org = G_org.to_undirected()
    edge_num = G_org.number_of_edges()
    G = pygsp.graphs.Graph(nx.adjacency_matrix(G_org))
    feats = np.load(path+'-feats.npy')
    # smooth
    for i in range(times):
        feats = feature_broadcast(feats, G_org)
    np.save(path+'-feats_'+str(times)+'.npy', feats)

    min_max_scaler = preprocessing.MinMaxScaler()
    feats = min_max_scaler.fit_transform(feats)
    smoothness = np.zeros(feats.shape[1])
    for src, dst in G_org.edges():
        smoothness += (feats[src]-feats[dst])*(feats[src]-feats[dst])
    smoothness = np.linalg.norm(smoothness,ord=1)
    print('The smoothness is: ', 2*smoothness/edge_num/feats.shape[1]) 
開發者ID:yifan-h,項目名稱:CS-GNN,代碼行數:22,代碼來源:smoothness.py

示例10: compute_label_smoothness

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def compute_label_smoothness(path, rate=0.):
    G_org = json_graph.node_link_graph(json.load(open(path+'-G.json')))
    # G_org = remove_unlabeled(G_org)
    if nx.is_directed(G_org):
        G_org = G_org.to_undirected()
    class_map = json.load(open(path+'-class_map.json'))
    for k, v in class_map.items():
        if type(v) != list:
            class_map = convert_list(class_map)
        break
    labels = convert_ndarray(class_map)
    labels = np.squeeze(label_to_vector(labels))

    # smooth
    G_org = label_broadcast(G_org, labels, rate)
    with open(path+'-G_'+str(rate)+'.json', 'w') as f:
        f.write(json.dumps(json_graph.node_link_data(G_org)))

    edge_num = G_org.number_of_edges()
    G = pygsp.graphs.Graph(nx.adjacency_matrix(G_org))
    smoothness = 0
    for src, dst in G_org.edges():
        if labels[src] != labels[dst]:
            smoothness += 1
    print('The smoothness is: ', 2*smoothness/edge_num) 
開發者ID:yifan-h,項目名稱:CS-GNN,代碼行數:27,代碼來源:smoothness.py

示例11: train

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def train(self, G):
        A = sp.csr_matrix(nx.adjacency_matrix(G))
        if not self.is_large:
            print("Running NetMF for a small window size...")
            deepwalk_matrix = self._compute_deepwalk_matrix(
                A, window=self.window_size, b=self.negative
            )

        else:
            print("Running NetMF for a large window size...")
            vol = float(A.sum())
            evals, D_rt_invU = self._approximate_normalized_laplacian(
                A, rank=self.rank, which="LA"
            )
            deepwalk_matrix = self._approximate_deepwalk_matrix(
                evals, D_rt_invU, window=self.window_size, vol=vol, b=self.negative
            )
        # factorize deepwalk matrix with SVD
        u, s, _ = sp.linalg.svds(deepwalk_matrix, self.dimension)
        self.embeddings = sp.diags(np.sqrt(s)).dot(u.T).T
        return self.embeddings 
開發者ID:THUDM,項目名稱:cogdl,代碼行數:23,代碼來源:netmf.py

示例12: __init__

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def __init__(self, graph, hardConstraintPenalty):
        """
        :param graph: a NetworkX graph to be colored
        :param hardConstraintPenalty: penalty for hard constraint (coloring violation)
        """

        # initialize instance variables:
        self.graph = graph
        self.hardConstraintPenalty = hardConstraintPenalty

        # a list of the nodes in the graph:
        self.nodeList = list(self.graph.nodes)

        # adjacency matrix of the nodes -
        # matrix[i,j] equals '1' if nodes i and j are connected, or '0' otherwise:
        self.adjMatrix = nx.adjacency_matrix(graph).todense() 
開發者ID:PacktPublishing,項目名稱:Hands-On-Genetic-Algorithms-with-Python,代碼行數:18,代碼來源:graphs.py

示例13: optimize

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def optimize(self):
        """
        Method to run the optimization and halt it when overfitting started.
        The output matrices are all saved when optimization has finished.
        """
        self.best_modularity = 0
        self.stop_index = 0
        with tf.Session(graph=self.computation_graph) as session:
            self.init.run()
            self.logs = log_setup(self.args)
            print("Optimization started.\n")
            self.build_graph()
            feed_dict = {self.S_0: overlap_generator(self.G), self.B1: np.array(nx.adjacency_matrix(self.G).todense()), self.B2:modularity_generator(self.G)}
            for i in tqdm(range(self.args.iteration_number)):
                start = time.time()
                H = session.run(self.H, feed_dict=feed_dict)
                current_modularity = self.update_state(H)
                end = time.time()
                log_updater(self.logs, i, end-start, current_modularity)
                if self.stop_index > self.args.early_stopping:
                    break
            self.initiate_dump(session, feed_dict) 
開發者ID:benedekrozemberczki,項目名稱:M-NMF,代碼行數:24,代碼來源:modularity_nmf.py

示例14: get_subgraph

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def get_subgraph(triples, triple_dict, whole_graph):
    # Only handle 1-hop for now
    # Data Types for Nodes are INT
    in_graph = set()
    for triple in triples:
        head = triple[0]
        tail = triple[1]
        in_graph.add(tuple(triple))
        for tri in triple_dict[head.item()]:
            single1 = (head, tri[0], tri[1])
            in_graph.add(single1)
        for tri in triple_dict[tail.item()]:
            single2 = (tail, tri[0], tri[1])
            in_graph.add(single2)
    in_kg = KnowledgeGraph()
    in_kg.load_triple_noweight(in_graph)
    in_kg.triple2graph_noweight()
    included_nodes = list(in_kg.G)
    adj_ingraph = nx.adjacency_matrix(whole_graph.G, nodelist=included_nodes).todense()
    return np.array(included_nodes), adj_ingraph 
開發者ID:EagleW,項目名稱:PaperRobot,代碼行數:22,代碼來源:utils.py

示例15: __graph_transition_matrix

# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import adjacency_matrix [as 別名]
def __graph_transition_matrix(G, sparse=True):
    A = nx.adjacency_matrix(G).astype('float')
    # normalize rows to sum to 1
    degs = A.sum(axis=1)

    # take care of zero degree
    degs[degs == 0] = 1

    N = len(degs)

    if sparse == True:
        rev_degs = 1 / degs
        diag = scipy.sparse.dia_matrix((rev_degs.reshape((1, N)), np.array([0])), shape=(N, N))
        A = diag.dot(A)
    else:
        A = A.todense()
        A = A / degs.reshape((A.shape[0], 1))

    return A 
開發者ID:GiulioRossetti,項目名稱:cdlib,代碼行數:21,代碼來源:DER.py


注:本文中的networkx.adjacency_matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。