本文整理匯總了Python中networkx.OrderedMultiDiGraph方法的典型用法代碼示例。如果您正苦於以下問題:Python networkx.OrderedMultiDiGraph方法的具體用法?Python networkx.OrderedMultiDiGraph怎麽用?Python networkx.OrderedMultiDiGraph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類networkx
的用法示例。
在下文中一共展示了networkx.OrderedMultiDiGraph方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_networkxs_to_graphs_tuple_with_none_fields
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def test_networkxs_to_graphs_tuple_with_none_fields(self):
graph_nx = nx.OrderedMultiDiGraph()
data_dict = utils_np.networkx_to_data_dict(
graph_nx,
node_shape_hint=None,
edge_shape_hint=None)
self.assertEqual(None, data_dict["edges"])
self.assertEqual(None, data_dict["globals"])
self.assertEqual(None, data_dict["nodes"])
graph_nx.add_node(0, features=None)
data_dict = utils_np.networkx_to_data_dict(
graph_nx,
node_shape_hint=1,
edge_shape_hint=None)
self.assertEqual(None, data_dict["nodes"])
graph_nx.add_edge(0, 0, features=None)
data_dict = utils_np.networkx_to_data_dict(
graph_nx,
node_shape_hint=[1],
edge_shape_hint=[1])
self.assertEqual(None, data_dict["edges"])
graph_nx.graph["features"] = None
utils_np.networkx_to_data_dict(graph_nx)
self.assertEqual(None, data_dict["globals"])
示例2: __init__
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def __init__(self, model):
super().__init__()
self.nx_graph = nx.OrderedMultiDiGraph()
self._input_names = inputs = model.get('inputs', 'input')
self._output_names = outputs = model.get('outputs', 'output')
self._add_module(inputs, outputs, model['name'], model, [])
self._optimize()
self._validate()
# import pdb; pdb.set_trace()
示例3: test_multidigraph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def test_multidigraph():
G = nx.OrderedMultiDiGraph()
示例4: test_multidigraph
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def test_multidigraph(self):
G = nx.OrderedMultiDiGraph()
示例5: _check_key
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def _check_key(node_index, key):
if node_index != key:
raise ValueError(
"Nodes of the networkx.OrderedMultiDiGraph must have sequential "
"integer keys consistent with the order of the nodes (e.g. "
"`list(graph_nx.nodes)[i] == i`), found node with index {} and key {}"
.format(node_index, key))
return True
示例6: graphs_tuple_to_networkxs
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def graphs_tuple_to_networkxs(graphs_tuple):
"""Converts a `graphs.GraphsTuple` to a sequence of networkx graphs.
Args:
graphs_tuple: A `graphs.GraphsTuple` instance containing numpy arrays.
Returns:
The list of `networkx.OrderedMultiDiGraph`s. The node keys will be the data
dict integer node indices.
"""
return [
data_dict_to_networkx(x) for x in graphs_tuple_to_data_dicts(graphs_tuple)
]
示例7: _single_data_dict_to_networkx
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def _single_data_dict_to_networkx(data_dict):
graph_nx = nx.OrderedMultiDiGraph()
if data_dict["nodes"].size > 0:
for i, x in enumerate(data_dict["nodes"]):
graph_nx.add_node(i, features=x)
if data_dict["edges"].size > 0:
edge_data = zip(data_dict["senders"], data_dict["receivers"], [{
"features": x
} for x in data_dict["edges"]])
graph_nx.add_edges_from(edge_data)
graph_nx.graph["features"] = data_dict["globals"]
return graph_nx
示例8: networkxs_to_graphs_tuple
# 需要導入模塊: import networkx [as 別名]
# 或者: from networkx import OrderedMultiDiGraph [as 別名]
def networkxs_to_graphs_tuple(graph_nxs,
node_shape_hint=None,
edge_shape_hint=None,
data_type_hint=np.float32):
"""Constructs an instance from an iterable of networkx graphs.
The networkx graph should be set up such that, for fixed shapes `node_shape`,
`edge_shape` and `global_shape`:
- `graph_nx.nodes(data=True)[i][-1]["features"]` is, for any node index i, a
tensor of shape `node_shape`, or `None`;
- `graph_nx.edges(data=True)[i][-1]["features"]` is, for any edge index i, a
tensor of shape `edge_shape`, or `None`;
- `graph_nx.edges(data=True)[i][-1]["index"]`, if present, defines the order
in which the edges will be sorted in the resulting `data_dict`;
- `graph_nx.graph["features"] is a tensor of shape `global_shape`, or
`None`.
The output data is a sequence of data dicts with fields:
NODES, EDGES, RECEIVERS, SENDERS, GLOBALS, N_NODE, N_EDGE.
Args:
graph_nxs: A container of `networkx.OrderedMultiDiGraph`s. The node keys
must be sequential integer values following the order in which nodes are
added to the graph starting from zero. That is
`list(graph_nx.nodes)[i] == i`.
node_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph
does not contain nodes, the trailing shape for the created `NODES` field.
If `None` (the default), this field is left `None`. This is not used if
`graph_nx` contains at least one node.
edge_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph
does not contain edges, the trailing shape for the created `EDGES` field.
If `None` (the default), this field is left `None`. This is not used if
`graph_nx` contains at least one edge.
data_type_hint: (numpy dtype, default=`np.float32`) If the `NODES` or
`EDGES` fields are autocompleted, their type.
Returns:
The instance.
Raises:
ValueError: If `graph_nxs` is not an iterable of networkx instances.
"""
data_dicts = []
try:
for graph_nx in graph_nxs:
data_dict = networkx_to_data_dict(graph_nx, node_shape_hint,
edge_shape_hint, data_type_hint)
data_dicts.append(data_dict)
except TypeError:
raise ValueError("Could not convert some elements of `graph_nxs`. "
"Did you pass an iterable of networkx instances?")
return data_dicts_to_graphs_tuple(data_dicts)