當前位置: 首頁>>代碼示例>>Python>>正文


Python network.Network方法代碼示例

本文整理匯總了Python中network.Network方法的典型用法代碼示例。如果您正苦於以下問題:Python network.Network方法的具體用法?Python network.Network怎麽用?Python network.Network使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在network的用法示例。


在下文中一共展示了network.Network方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_population

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def create_population(self, count):
        """Create a population of random networks.

        Args:
            count (int): Number of networks to generate, aka the
                size of the population

        Returns:
            (list): Population of network objects

        """
        pop = []
        for _ in range(0, count):
            # Create a random network.
            network = Network(self.nn_param_choices)
            network.create_random()

            # Add the network to our population.
            pop.append(network)

        return pop 
開發者ID:harvitronix,項目名稱:neural-network-genetic-algorithm,代碼行數:23,代碼來源:optimizer.py

示例2: mutate

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def mutate(self, network):
        """Randomly mutate one part of the network.

        Args:
            network (dict): The network parameters to mutate

        Returns:
            (Network): A randomly mutated network object

        """
        # Choose a random key.
        mutation = random.choice(list(self.nn_param_choices.keys()))

        # Mutate one of the params.
        network.network[mutation] = random.choice(self.nn_param_choices[mutation])

        return network 
開發者ID:harvitronix,項目名稱:neural-network-genetic-algorithm,代碼行數:19,代碼來源:optimizer.py

示例3: __init__

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def __init__(self, config):
        threading.Thread.__init__(self)
        self.daemon = True
        self.debug = False
        self.config = config
        self.network = Network(config)
        # network sends responses on that queue
        self.network_queue = Queue.Queue()

        self.running = False
        self.lock = threading.RLock()

        # each GUI is a client of the daemon
        self.clients = []
        self.request_id = 0
        self.requests = {} 
開發者ID:mazaclub,項目名稱:encompass,代碼行數:18,代碼來源:daemon.py

示例4: main

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def main(args):


    paths = Dataset(args.dataset_path)['abspath']
    print('%d images to load.' % len(paths))
    assert(len(paths)>0)

    # Load model files and config file
    network = Network()
    network.load_model(args.model_dir) 
    images = preprocess(paths, network.config, False)

    # Run forward pass to calculate embeddings
    mu, sigma_sq = network.extract_feature(images, args.batch_size, verbose=True)
    feat_pfe = np.concatenate([mu, sigma_sq], axis=1)
    
    lfwtest = LFWTest(paths)
    lfwtest.init_standard_proto(args.protocol_path)

    accuracy, threshold = lfwtest.test_standard_proto(mu, utils.pair_euc_score)
    print('Euclidean (cosine) accuracy: %.5f threshold: %.5f' % (accuracy, threshold))
    accuracy, threshold = lfwtest.test_standard_proto(feat_pfe, utils.pair_MLS_score)
    print('MLS accuracy: %.5f threshold: %.5f' % (accuracy, threshold)) 
開發者ID:seasonSH,項目名稱:Probabilistic-Face-Embeddings,代碼行數:25,代碼來源:eval_lfw.py

示例5: load_model

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def load_model(weight_path, continuous_fine_tuning=False):
    weight_path = os.path.abspath(weight_path)
    if not os.path.exists(weight_path):
        raise RuntimeError("Could not find file: " + weight_path + ". Did you remember to download the pretrained model?")
    if weight_path.endswith('.gz'):
        with gzip.open(weight_path, 'rb') as f_in:
            state = torch.load(f_in, get_device())
    else:
        state = torch.load(weight_path, get_device())
    net = Network()
    net.to(net.device)
    net.load_state_dict(state['network'])

    if continuous_fine_tuning:
        net.cft = CFT(state, net)
    return net 
開發者ID:MortenHannemose,項目名稱:pytorch-vfi-cft,代碼行數:18,代碼來源:utils.py

示例6: two_layer_sigmoid

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def two_layer_sigmoid():
    model = Network()
    model.add(Linear('fc1', 784, 256, 0.001))
    model.add(Sigmoid('sg1'))
    model.add(Linear('fc2', 256, 10, 0.001))
    model.add(Sigmoid('sg2'))
    config = {
        'learning_rate': 0.01,
        'weight_decay': 0.005,
        'momentum': 0.9,
        'batch_size': 100,
        'max_epoch': 20,
        'disp_freq': 50,
        'test_epoch': 5
    }
    return model, config 
開發者ID:Trinkle23897,項目名稱:Artificial-Neural-Network-THU-2018,代碼行數:18,代碼來源:run_mlp.py

示例7: two_layer_relu

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def two_layer_relu():
    model = Network()
    model.add(Linear('fc1', 784, 256, 0.001))
    model.add(Relu('rl1'))
    model.add(Linear('fc2', 256, 10, 0.001))
    model.add(Relu('rl2'))
    config = {
        'learning_rate': 0.0001,
        'weight_decay': 0.005,
        'momentum': 0.9,
        'batch_size': 200,
        'max_epoch': 40,
        'disp_freq': 50,
        'test_epoch': 5
    }
    return model, config 
開發者ID:Trinkle23897,項目名稱:Artificial-Neural-Network-THU-2018,代碼行數:18,代碼來源:run_mlp.py

示例8: three_layer_sigmoid

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def three_layer_sigmoid():
    model = Network()
    model.add(Linear('fc1', 784, 256, 0.001))
    model.add(Sigmoid('sg1'))
    model.add(Linear('fc2', 256, 128, 0.001))
    model.add(Sigmoid('sg2'))
    model.add(Linear('fc3', 128, 10, 0.001))
    model.add(Sigmoid('sg3'))
    config = {
        'learning_rate': 0.01,
        'weight_decay': 0.005,
        'momentum': 0.9,
        'batch_size': 300,
        'max_epoch': 60,
        'disp_freq': 50,
        'test_epoch': 5
    }
    return model, config 
開發者ID:Trinkle23897,項目名稱:Artificial-Neural-Network-THU-2018,代碼行數:20,代碼來源:run_mlp.py

示例9: three_layer_relu

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def three_layer_relu():
    model = Network()
    model.add(Linear('fc1', 784, 256, 0.001))
    model.add(Relu('rl1'))
    model.add(Linear('fc2', 256, 128, 0.001))
    model.add(Relu('rl2'))
    model.add(Linear('fc3', 128, 10, 0.001))
    model.add(Relu('rl3'))
    config = {
        'learning_rate': 0.0001,
        'weight_decay': 0.005,
        'momentum': 0.9,
        'batch_size': 300,
        'max_epoch': 60,
        'disp_freq': 50,
        'test_epoch': 5
    }
    return model, config 
開發者ID:Trinkle23897,項目名稱:Artificial-Neural-Network-THU-2018,代碼行數:20,代碼來源:run_mlp.py

示例10: main

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def main(config):

    #Initialize Network
    net = Network(config)

    data = {}

    if config.run_mode == 'train':

        data['train'] = load_data(config, 'train')

        net.train(data)

    if config.run_mode == 'test':

        data['test'] = load_data(config, 'test')

        net.test(data)

    return 0 
開發者ID:goncalo120,項目名稱:3DRegNet,代碼行數:22,代碼來源:main.py

示例11: test

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def test():
    n = Network(LATENCY * 2)
    nodes = [Node(n, i, i%4==0) for i in range(20)]
    for i in range(30):
        for _ in range(2):
            z = random.randrange(20)
            n.send_to([1000 + i], z, at=5+i*2)
    for i in range(21 * LATENCY):
        n.tick()
        if i % 10 == 0:
            print("Value sets", [sorted(node.seen.keys()) for node in nodes])
    countz = {}
    maxval = ""
    for node in nodes:
        if node.honest:
            k = str(sorted(node.seen.keys()))
            countz[k] = countz.get(k, 0) + 1
            if countz[k] > countz.get(maxval, 0):
                maxval = k
    print("Most popular: %s" % maxval, "with %d agreeing" % countz[maxval]) 
開發者ID:ethereum,項目名稱:research,代碼行數:22,代碼來源:consensus.py

示例12: breed

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def breed(self, mother, father):
        """Make two children as parts of their parents.

        Args:
            mother (dict): Network parameters
            father (dict): Network parameters

        Returns:
            (list): Two network objects

        """
        children = []
        for _ in range(2):

            child = {}

            # Loop through the parameters and pick params for the kid.
            for param in self.nn_param_choices:
                child[param] = random.choice(
                    [mother.network[param], father.network[param]]
                )

            # Now create a network object.
            network = Network(self.nn_param_choices)
            network.create_set(child)

            # Randomly mutate some of the children.
            if self.mutate_chance > random.random():
                network = self.mutate(network)

            children.append(network)

        return children 
開發者ID:harvitronix,項目名稱:neural-network-genetic-algorithm,代碼行數:35,代碼來源:optimizer.py

示例13: generate_network_list

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def generate_network_list(nn_param_choices):
    """Generate a list of all possible networks.

    Args:
        nn_param_choices (dict): The parameter choices

    Returns:
        networks (list): A list of network objects

    """
    networks = []

    # This is silly.
    for nbn in nn_param_choices['nb_neurons']:
        for nbl in nn_param_choices['nb_layers']:
            for a in nn_param_choices['activation']:
                for o in nn_param_choices['optimizer']:

                    # Set the parameters.
                    network = {
                        'nb_neurons': nbn,
                        'nb_layers': nbl,
                        'activation': a,
                        'optimizer': o,
                    }

                    # Instantiate a network object with set parameters.
                    network_obj = Network()
                    network_obj.create_set(network)

                    networks.append(network_obj)

    return networks 
開發者ID:harvitronix,項目名稱:neural-network-genetic-algorithm,代碼行數:35,代碼來源:brute.py

示例14: main

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def main(_):
  model_dir = util.get_model_dir(conf, 
      ['data_dir', 'sample_dir', 'max_epoch', 'test_step', 'save_step',
       'is_train', 'random_seed', 'log_level', 'display', 'runtime_base_dir', 
       'occlude_start_row', 'num_generated_images'])
  util.preprocess_conf(conf)
  validate_parameters(conf)

  data = 'mnist' if conf.data == 'color-mnist' else conf.data 
  DATA_DIR = os.path.join(conf.runtime_base_dir, conf.data_dir, data)
  SAMPLE_DIR = os.path.join(conf.runtime_base_dir, conf.sample_dir, conf.data, model_dir)

  util.check_and_create_dir(DATA_DIR)
  util.check_and_create_dir(SAMPLE_DIR)
  
  dataset = get_dataset(DATA_DIR, conf.q_levels)

  with tf.Session() as sess:
    network = Network(sess, conf, dataset.height, dataset.width, dataset.channels)

    stat = Statistic(sess, conf.data, conf.runtime_base_dir, model_dir, tf.trainable_variables())
    stat.load_model()

    if conf.is_train:
      train(dataset, network, stat, SAMPLE_DIR)
    else:
      generate(network, dataset.height, dataset.width, SAMPLE_DIR) 
開發者ID:jakebelew,項目名稱:gated-pixel-cnn,代碼行數:29,代碼來源:main.py

示例15: __init__

# 需要導入模塊: import network [as 別名]
# 或者: from network import Network [as 別名]
def __init__(self, socket, config=None):

        if config is None:
            config = {}  # Do not use mutables as default arguments!
        threading.Thread.__init__(self)
        self.config = SimpleConfig(config) if type(config) == type({}) else config
        self.message_id = 0
        self.unanswered_requests = {}
        self.subscriptions = {}
        self.debug = False
        self.lock = threading.Lock()
        self.pending_transactions_for_notifications = []
        self.callbacks = {}
        self.running = True
        self.daemon = True

        if socket:
            self.pipe = util.SocketPipe(socket)
            self.network = None
        else:
            self.network = Network(config)
            self.pipe = util.QueuePipe(send_queue=self.network.requests_queue)
            self.network.start(self.pipe.get_queue)
            for key in ['status','banner','updated','servers','interfaces']:
                value = self.network.get_status_value(key)
                self.pipe.get_queue.put({'method':'network.status', 'params':[key, value]})

        # status variables
        self.status = 'connecting'
        self.servers = {}
        self.banner = ''
        self.blockchain_height = 0
        self.server_height = 0
        self.interfaces = [] 
開發者ID:mazaclub,項目名稱:encompass,代碼行數:36,代碼來源:network_proxy.py


注:本文中的network.Network方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。