本文整理匯總了Python中nets.vgg.vgg_19方法的典型用法代碼示例。如果您正苦於以下問題:Python vgg.vgg_19方法的具體用法?Python vgg.vgg_19怎麽用?Python vgg.vgg_19使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.vgg
的用法示例。
在下文中一共展示了vgg.vgg_19方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testTrainEvalWithReuse
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 256, 256
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = vgg.vgg_19(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = vgg.vgg_19(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例2: testBuild
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testBuild(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = vgg.vgg_19(inputs, num_classes)
self.assertEquals(logits.op.name, 'vgg_19/fc8/squeezed')
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
示例3: testFullyConvolutional
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testFullyConvolutional(self):
batch_size = 1
height, width = 256, 256
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = vgg.vgg_19(inputs, num_classes, spatial_squeeze=False)
self.assertEquals(logits.op.name, 'vgg_19/fc8/BiasAdd')
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, 2, 2, num_classes])
示例4: testEndPoints
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testEndPoints(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = vgg.vgg_19(inputs, num_classes)
expected_names = [
'vgg_19/conv1/conv1_1',
'vgg_19/conv1/conv1_2',
'vgg_19/pool1',
'vgg_19/conv2/conv2_1',
'vgg_19/conv2/conv2_2',
'vgg_19/pool2',
'vgg_19/conv3/conv3_1',
'vgg_19/conv3/conv3_2',
'vgg_19/conv3/conv3_3',
'vgg_19/conv3/conv3_4',
'vgg_19/pool3',
'vgg_19/conv4/conv4_1',
'vgg_19/conv4/conv4_2',
'vgg_19/conv4/conv4_3',
'vgg_19/conv4/conv4_4',
'vgg_19/pool4',
'vgg_19/conv5/conv5_1',
'vgg_19/conv5/conv5_2',
'vgg_19/conv5/conv5_3',
'vgg_19/conv5/conv5_4',
'vgg_19/pool5',
'vgg_19/fc6',
'vgg_19/fc7',
'vgg_19/fc8'
]
self.assertSetEqual(set(end_points.keys()), set(expected_names))
示例5: testEvaluation
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testEvaluation(self):
batch_size = 2
height, width = 224, 224
num_classes = 1000
with self.test_session():
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = vgg.vgg_19(eval_inputs, is_training=False)
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
predictions = tf.argmax(logits, 1)
self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
示例6: testForward
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testForward(self):
batch_size = 1
height, width = 224, 224
with self.test_session() as sess:
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = vgg.vgg_19(inputs)
sess.run(tf.global_variables_initializer())
output = sess.run(logits)
self.assertTrue(output.any())
示例7: testGlobalPool
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testGlobalPool(self):
batch_size = 1
height, width = 256, 256
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = vgg.vgg_19(inputs, num_classes, spatial_squeeze=False,
global_pool=True)
self.assertEquals(logits.op.name, 'vgg_19/fc8/BiasAdd')
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, 1, 1, num_classes])
示例8: testNoClasses
# 需要導入模塊: from nets import vgg [as 別名]
# 或者: from nets.vgg import vgg_19 [as 別名]
def testNoClasses(self):
batch_size = 5
height, width = 224, 224
num_classes = None
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
net, end_points = vgg.vgg_19(inputs, num_classes)
expected_names = [
'vgg_19/conv1/conv1_1',
'vgg_19/conv1/conv1_2',
'vgg_19/pool1',
'vgg_19/conv2/conv2_1',
'vgg_19/conv2/conv2_2',
'vgg_19/pool2',
'vgg_19/conv3/conv3_1',
'vgg_19/conv3/conv3_2',
'vgg_19/conv3/conv3_3',
'vgg_19/conv3/conv3_4',
'vgg_19/pool3',
'vgg_19/conv4/conv4_1',
'vgg_19/conv4/conv4_2',
'vgg_19/conv4/conv4_3',
'vgg_19/conv4/conv4_4',
'vgg_19/pool4',
'vgg_19/conv5/conv5_1',
'vgg_19/conv5/conv5_2',
'vgg_19/conv5/conv5_3',
'vgg_19/conv5/conv5_4',
'vgg_19/pool5',
'vgg_19/fc6',
'vgg_19/fc7',
]
self.assertSetEqual(set(end_points.keys()), set(expected_names))
self.assertTrue(net.op.name.startswith('vgg_19/fc7'))