當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet_v2.bottleneck方法代碼示例

本文整理匯總了Python中nets.resnet_v2.bottleneck方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v2.bottleneck方法的具體用法?Python resnet_v2.bottleneck怎麽用?Python resnet_v2.bottleneck使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.resnet_v2的用法示例。


在下文中一共展示了resnet_v2.bottleneck方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testEndPointsV2

# 需要導入模塊: from nets import resnet_v2 [as 別名]
# 或者: from nets.resnet_v2 import bottleneck [as 別名]
def testEndPointsV2(self):
    """Test the end points of a tiny v2 bottleneck network."""
    bottleneck = resnet_v2.bottleneck
    blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
              resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
    inputs = create_test_input(2, 32, 16, 3)
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v2/shortcut',
        'tiny/block1/unit_1/bottleneck_v2/conv1',
        'tiny/block1/unit_1/bottleneck_v2/conv2',
        'tiny/block1/unit_1/bottleneck_v2/conv3',
        'tiny/block1/unit_2/bottleneck_v2/conv1',
        'tiny/block1/unit_2/bottleneck_v2/conv2',
        'tiny/block1/unit_2/bottleneck_v2/conv3',
        'tiny/block2/unit_1/bottleneck_v2/shortcut',
        'tiny/block2/unit_1/bottleneck_v2/conv1',
        'tiny/block2/unit_1/bottleneck_v2/conv2',
        'tiny/block2/unit_1/bottleneck_v2/conv3',
        'tiny/block2/unit_2/bottleneck_v2/conv1',
        'tiny/block2/unit_2/bottleneck_v2/conv2',
        'tiny/block2/unit_2/bottleneck_v2/conv3']
    self.assertItemsEqual(expected, end_points) 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:26,代碼來源:resnet_v2_test.py

示例2: testAtrousValuesBottleneck

# 需要導入模塊: from nets import resnet_v2 [as 別名]
# 或者: from nets.resnet_v2 import bottleneck [as 別名]
def testAtrousValuesBottleneck(self):
    self._atrousValues(resnet_v2.bottleneck) 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:4,代碼來源:resnet_v2_test.py

示例3: _resnet_small

# 需要導入模塊: from nets import resnet_v2 [as 別名]
# 或者: from nets.resnet_v2 import bottleneck [as 別名]
def _resnet_small(self,
                    inputs,
                    num_classes=None,
                    is_training=True,
                    global_pool=True,
                    output_stride=None,
                    include_root_block=True,
                    reuse=None,
                    scope='resnet_v2_small'):
    """A shallow and thin ResNet v2 for faster tests."""
    bottleneck = resnet_v2.bottleneck
    blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(32, 8, 1)] * 2)]
    return resnet_v2.resnet_v2(inputs, blocks, num_classes,
                               is_training=is_training,
                               global_pool=global_pool,
                               output_stride=output_stride,
                               include_root_block=include_root_block,
                               reuse=reuse,
                               scope=scope) 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:29,代碼來源:resnet_v2_test.py

示例4: _atrousValues

# 需要導入模塊: from nets import resnet_v2 [as 別名]
# 或者: from nets.resnet_v2 import bottleneck [as 別名]
def _atrousValues(self, bottleneck):
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.

    Args:
      bottleneck: The bottleneck function.
    """
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
        resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
        resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      with slim.arg_scope([slim.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with tf.Graph().as_default():
            with self.test_session() as sess:
              tf.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)
              # Dense feature extraction followed by subsampling.
              output = resnet_utils.stack_blocks_dense(inputs,
                                                       blocks,
                                                       output_stride)
              if output_stride is None:
                factor = 1
              else:
                factor = nominal_stride // output_stride

              output = resnet_utils.subsample(output, factor)
              # Make the two networks use the same weights.
              tf.get_variable_scope().reuse_variables()
              # Feature extraction at the nominal network rate.
              expected = self._stack_blocks_nondense(inputs, blocks)
              sess.run(tf.global_variables_initializer())
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) 
開發者ID:wenwei202,項目名稱:terngrad,代碼行數:47,代碼來源:resnet_v2_test.py

示例5: _atrousValues

# 需要導入模塊: from nets import resnet_v2 [as 別名]
# 或者: from nets.resnet_v2 import bottleneck [as 別名]
def _atrousValues(self, bottleneck):
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.

    Args:
      bottleneck: The bottleneck function.
    """
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
        resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
        resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
      with slim.arg_scope([slim.batch_norm], is_training=False):
        for output_stride in [1, 2, 4, 8, None]:
          with tf.Graph().as_default():
            with self.test_session() as sess:
              tf.set_random_seed(0)
              inputs = create_test_input(1, height, width, 3)
              # Dense feature extraction followed by subsampling.
              output = resnet_utils.stack_blocks_dense(inputs,
                                                       blocks,
                                                       output_stride)
              if output_stride is None:
                factor = 1
              else:
                factor = nominal_stride // output_stride

              output = resnet_utils.subsample(output, factor)
              # Make the two networks use the same weights.
              tf.get_variable_scope().reuse_variables()
              # Feature extraction at the nominal network rate.
              expected = self._stack_blocks_nondense(inputs, blocks)
              sess.run(tf.initialize_all_variables())
              output, expected = sess.run([output, expected])
              self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:47,代碼來源:resnet_v2_test.py


注:本文中的nets.resnet_v2.bottleneck方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。