本文整理匯總了Python中nets.resnet_v1.resnet_v1_block方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v1.resnet_v1_block方法的具體用法?Python resnet_v1.resnet_v1_block怎麽用?Python resnet_v1.resnet_v1_block使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.resnet_v1
的用法示例。
在下文中一共展示了resnet_v1.resnet_v1_block方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _resnet_small
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_block [as 別名]
def _resnet_small(self,
inputs,
num_classes=None,
is_training=True,
global_pool=True,
output_stride=None,
include_root_block=True,
reuse=None,
scope='resnet_v1_small'):
"""A shallow and thin ResNet v1 for faster tests."""
block = resnet_v1.resnet_v1_block
blocks = [
block('block1', base_depth=1, num_units=3, stride=2),
block('block2', base_depth=2, num_units=3, stride=2),
block('block3', base_depth=4, num_units=3, stride=2),
block('block4', base_depth=8, num_units=2, stride=1),
]
return resnet_v1.resnet_v1(inputs, blocks, num_classes,
is_training=is_training,
global_pool=global_pool,
output_stride=output_stride,
include_root_block=include_root_block,
reuse=reuse,
scope=scope)
示例2: testEndPointsV1
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_block [as 別名]
def testEndPointsV1(self):
"""Test the end points of a tiny v1 bottleneck network."""
blocks = [
resnet_v1.resnet_v1_block(
'block1', base_depth=1, num_units=2, stride=2),
resnet_v1.resnet_v1_block(
'block2', base_depth=2, num_units=2, stride=1),
]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v1/shortcut',
'tiny/block1/unit_1/bottleneck_v1/conv1',
'tiny/block1/unit_1/bottleneck_v1/conv2',
'tiny/block1/unit_1/bottleneck_v1/conv3',
'tiny/block1/unit_2/bottleneck_v1/conv1',
'tiny/block1/unit_2/bottleneck_v1/conv2',
'tiny/block1/unit_2/bottleneck_v1/conv3',
'tiny/block2/unit_1/bottleneck_v1/shortcut',
'tiny/block2/unit_1/bottleneck_v1/conv1',
'tiny/block2/unit_1/bottleneck_v1/conv2',
'tiny/block2/unit_1/bottleneck_v1/conv3',
'tiny/block2/unit_2/bottleneck_v1/conv1',
'tiny/block2/unit_2/bottleneck_v1/conv2',
'tiny/block2/unit_2/bottleneck_v1/conv3']
self.assertItemsEqual(expected, end_points)
示例3: _resnet_small
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_block [as 別名]
def _resnet_small(self,
inputs,
num_classes=None,
is_training=True,
global_pool=True,
output_stride=None,
include_root_block=True,
spatial_squeeze=True,
reuse=None,
scope='resnet_v1_small'):
"""A shallow and thin ResNet v1 for faster tests."""
block = resnet_v1.resnet_v1_block
blocks = [
block('block1', base_depth=1, num_units=3, stride=2),
block('block2', base_depth=2, num_units=3, stride=2),
block('block3', base_depth=4, num_units=3, stride=2),
block('block4', base_depth=8, num_units=2, stride=1),
]
return resnet_v1.resnet_v1(inputs, blocks, num_classes,
is_training=is_training,
global_pool=global_pool,
output_stride=output_stride,
include_root_block=include_root_block,
spatial_squeeze=spatial_squeeze,
reuse=reuse,
scope=scope)
示例4: testEndPointsV1
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_block [as 別名]
def testEndPointsV1(self):
"""Test the end points of a tiny v1 bottleneck network."""
blocks = [
resnet_v1.resnet_v1_block(
'block1', base_depth=1, num_units=2, stride=2),
resnet_v1.resnet_v1_block(
'block2', base_depth=2, num_units=2, stride=1),
]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v1/shortcut',
'tiny/block1/unit_1/bottleneck_v1/conv1',
'tiny/block1/unit_1/bottleneck_v1/conv2',
'tiny/block1/unit_1/bottleneck_v1/conv3',
'tiny/block1/unit_2/bottleneck_v1/conv1',
'tiny/block1/unit_2/bottleneck_v1/conv2',
'tiny/block1/unit_2/bottleneck_v1/conv3',
'tiny/block2/unit_1/bottleneck_v1/shortcut',
'tiny/block2/unit_1/bottleneck_v1/conv1',
'tiny/block2/unit_1/bottleneck_v1/conv2',
'tiny/block2/unit_1/bottleneck_v1/conv3',
'tiny/block2/unit_2/bottleneck_v1/conv1',
'tiny/block2/unit_2/bottleneck_v1/conv2',
'tiny/block2/unit_2/bottleneck_v1/conv3']
self.assertItemsEqual(expected, end_points.keys())
示例5: testEndPointsV1
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_block [as 別名]
def testEndPointsV1(self):
"""Test the end points of a tiny v1 bottleneck network."""
blocks = [
resnet_v1.resnet_v1_block(
'block1', base_depth=1, num_units=2, stride=2),
resnet_v1.resnet_v1_block(
'block2', base_depth=2, num_units=2, stride=1),
]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v1/shortcut',
'tiny/block1/unit_1/bottleneck_v1/conv1',
'tiny/block1/unit_1/bottleneck_v1/conv2',
'tiny/block1/unit_1/bottleneck_v1/conv3',
'tiny/block1/unit_2/bottleneck_v1/conv1',
'tiny/block1/unit_2/bottleneck_v1/conv2',
'tiny/block1/unit_2/bottleneck_v1/conv3',
'tiny/block2/unit_1/bottleneck_v1/shortcut',
'tiny/block2/unit_1/bottleneck_v1/conv1',
'tiny/block2/unit_1/bottleneck_v1/conv2',
'tiny/block2/unit_1/bottleneck_v1/conv3',
'tiny/block2/unit_2/bottleneck_v1/conv1',
'tiny/block2/unit_2/bottleneck_v1/conv2',
'tiny/block2/unit_2/bottleneck_v1/conv3']
self.assertItemsEqual(expected, list(end_points.keys()))
示例6: GetResnet50Subnetwork
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_block [as 別名]
def GetResnet50Subnetwork(self,
images,
is_training=False,
global_pool=False,
reuse=None):
"""Constructs resnet_v1_50 part of the DELF model.
Args:
images: A tensor of size [batch, height, width, channels].
is_training: Whether or not the model is in training mode.
global_pool: If True, perform global average pooling after feature
extraction. This may be useful for DELF's descriptor fine-tuning stage.
reuse: Whether or not the layer and its variables should be reused.
Returns:
net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
If global_pool is True, height_out = width_out = 1.
end_points: A set of activations for external use.
"""
block = resnet_v1.resnet_v1_block
blocks = [
block('block1', base_depth=64, num_units=3, stride=2),
block('block2', base_depth=128, num_units=4, stride=2),
block('block3', base_depth=256, num_units=6, stride=2),
]
if self._target_layer_type == 'resnet_v1_50/block4':
blocks.append(block('block4', base_depth=512, num_units=3, stride=1))
net, end_points = resnet_v1.resnet_v1(
images,
blocks,
is_training=is_training,
global_pool=global_pool,
reuse=reuse,
scope='resnet_v1_50')
return net, end_points