本文整理匯總了Python中nets.resnet_v1.resnet_v1_152方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v1.resnet_v1_152方法的具體用法?Python resnet_v1.resnet_v1_152怎麽用?Python resnet_v1.resnet_v1_152使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.resnet_v1
的用法示例。
在下文中一共展示了resnet_v1.resnet_v1_152方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_152 [as 別名]
def __init__(self,
is_training,
first_stage_features_stride,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet152FeatureExtractor, self).__init__(
'resnet_v1_152', resnet_v1.resnet_v1_152, is_training,
first_stage_features_stride, reuse_weights, weight_decay)
示例2: __init__
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_152 [as 別名]
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet152FeatureExtractor, self).__init__(
'resnet_v1_152', resnet_v1.resnet_v1_152, is_training,
first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay)
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:25,代碼來源:faster_rcnn_resnet_v1_feature_extractor.py
示例3: __init__
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_152 [as 別名]
def __init__(self,
is_training,
first_stage_features_stride,
batch_norm_trainable=False,
reuse_weights=None,
weight_decay=0.0,
activation_fn=tf.nn.relu):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
batch_norm_trainable: See base class.
reuse_weights: See base class.
weight_decay: See base class.
activation_fn: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet152FeatureExtractor,
self).__init__('resnet_v1_152', resnet_v1.resnet_v1_152, is_training,
first_stage_features_stride, batch_norm_trainable,
reuse_weights, weight_decay, activation_fn)
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:27,代碼來源:faster_rcnn_resnet_v1_feature_extractor.py
示例4: __init__
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_152 [as 別名]
def __init__(self,
is_training,
first_stage_features_stride,
reuse_weights=None,
weight_decay=0.0,
base_features='block3',
freeze_layer='',
batch_norm_trainable=False,
):
"""Constructor.
Args:
is_training: See base class.
first_stage_features_stride: See base class.
reuse_weights: See base class.
weight_decay: See base class.
Raises:
ValueError: If `first_stage_features_stride` is not 8 or 16,
or if `architecture` is not supported.
"""
super(FasterRCNNResnet152FeatureExtractor, self).__init__(
'resnet_v1_152', resnet_v1.resnet_v1_152, is_training,
first_stage_features_stride, reuse_weights, weight_decay,
base_features, freeze_layer, batch_norm_trainable)
示例5: __init__
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_152 [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""Resnet152 v1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet152V1PpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, resnet_v1.resnet_v1_152, 'resnet_v1_152',
reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams=(
override_base_feature_extractor_hyperparams))
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py
示例6: __init__
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_v1_152 [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
batch_norm_trainable=True,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False):
"""Resnet152 v1 FPN Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a small batch size
(e.g. 1), it is desirable to disable batch norm update and use
pretrained batch norm params.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False. UNUSED currently.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
"""
super(SSDResnet152V1FpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, resnet_v1.resnet_v1_152, 'resnet_v1_152', 'fpn',
batch_norm_trainable, reuse_weights, use_explicit_padding)
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:34,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py