當前位置: 首頁>>代碼示例>>Python>>正文


Python resnet_v1.resnet_arg_scope方法代碼示例

本文整理匯總了Python中nets.resnet_v1.resnet_arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v1.resnet_arg_scope方法的具體用法?Python resnet_v1.resnet_arg_scope怎麽用?Python resnet_v1.resnet_arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.resnet_v1的用法示例。


在下文中一共展示了resnet_v1.resnet_arg_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: endpoints

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def endpoints(image, is_training):
    if image.get_shape().ndims != 4:
        raise ValueError('Input must be of size [batch, height, width, 3]')

    image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))

    with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
        _, endpoints = resnet_v1_50(image, num_classes=None, is_training=is_training, global_pool=True)

    endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
        endpoints['resnet_v1_50/block4'], [1, 2], name='pool5')

    return endpoints, 'resnet_v1_50' 
開發者ID:VisualComputingInstitute,項目名稱:triplet-reid,代碼行數:15,代碼來源:resnet_v1_50.py

示例2: endpoints

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def endpoints(image, is_training):
    if image.get_shape().ndims != 4:
        raise ValueError('Input must be of size [batch, height, width, 3]')

    image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))

    with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
        _, endpoints = resnet_v1_101(image, num_classes=None, is_training=is_training, global_pool=True)

    endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
        endpoints['resnet_v1_101/block4'], [1, 2], name='pool5')

    return endpoints, 'resnet_v1_101' 
開發者ID:VisualComputingInstitute,項目名稱:triplet-reid,代碼行數:15,代碼來源:resnet_v1_101.py

示例3: endpoints

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def endpoints(image, is_training):
    if image.get_shape().ndims != 4:
        raise ValueError('Input must be of size [batch, height, width, 3]')

    image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))

    with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
        _, endpoints = resnet_v1_50(image, num_classes=None, is_training=is_training, global_pool=True)

    endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
        endpoints['resnet_v1_50/block4'], [1, 2], name='pool5', keep_dims=False)

    return endpoints, 'resnet_v1_50' 
開發者ID:knwng,項目名稱:vehicle-triplet-reid,代碼行數:15,代碼來源:resnet_v1_50.py

示例4: endpoints

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def endpoints(image, is_training):
    if image.get_shape().ndims != 4:
        raise ValueError('Input must be of size [batch, height, width, 3]')

    image = image - tf.constant(_RGB_MEAN, dtype=tf.float32, shape=(1,1,1,3))

    with tf.contrib.slim.arg_scope(resnet_arg_scope(batch_norm_decay=0.9, weight_decay=0.0)):
        _, endpoints = resnet_v1_101(image, num_classes=None, is_training=is_training, global_pool=True)

    endpoints['model_output'] = endpoints['global_pool'] = tf.reduce_mean(
        endpoints['resnet_v1_101/block4'], [1, 2], name='pool5', keep_dims=False)

    return endpoints, 'resnet_v1_101' 
開發者ID:knwng,項目名稱:vehicle-triplet-reid,代碼行數:15,代碼來源:resnet_v1_101.py

示例5: _resnet_rf

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def _resnet_rf(csv_writer=None):
  """Computes RF and associated parameters for resnet models.

  The computed values are written to stdout.

  Args:
    csv_writer: A CSV writer for RF parameters, which is used if it is not None.
  """
  for model_type in _SUPPORTED_RESNET_VARIANTS:
    arg_sc = resnet_v1.resnet_arg_scope()
    _process_model_rf_and_flops(model_type, csv_writer, arg_sc) 
開發者ID:google-research,項目名稱:receptive_field,代碼行數:13,代碼來源:rf_benchmark.py

示例6: extract_features

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          with slim.arg_scope(
              [resnet_v1.bottleneck],
              use_bounded_activations=self._use_bounded_activations):
            _, activations = self._resnet_base_fn(
                inputs=ops.pad_to_multiple(preprocessed_inputs,
                                           self._pad_to_multiple),
                num_classes=None,
                is_training=None,
                global_pool=False,
                output_stride=None,
                store_non_strided_activations=True,
                scope=scope)

      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=self._base_feature_map_depth,
            num_layers=self._num_layers,
            image_features={
                'image_features': self._filter_features(activations)['block3']
            })
    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:49,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py

示例7: extract_features

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        _, image_features = self._resnet_base_fn(
            inputs=ops.pad_to_multiple(preprocessed_inputs,
                                       self._pad_to_multiple),
            num_classes=None,
            is_training=self._is_training and self._batch_norm_trainable,
            global_pool=False,
            output_stride=None,
            store_non_strided_activations=True,
            scope=scope)
      image_features = self._filter_features(image_features)
      last_feature_map = image_features['block4']
    with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights):
      with slim.arg_scope(self._conv_hyperparams):
        for i in range(5, 7):
          last_feature_map = slim.conv2d(
              last_feature_map,
              num_outputs=256,
              kernel_size=[3, 3],
              stride=2,
              padding='SAME',
              scope='block{}'.format(i))
          image_features['bottomup_{}'.format(i)] = last_feature_map
        feature_maps = feature_map_generators.fpn_top_down_feature_maps(
            [
                image_features[key] for key in
                ['block2', 'block3', 'block4', 'bottomup_5', 'bottomup_6']
            ],
            depth=256,
            scope='top_down_features')
    return feature_maps.values() 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:55,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py

示例8: extract_features

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          _, image_features = self._resnet_base_fn(
              inputs=ops.pad_to_multiple(preprocessed_inputs,
                                         self._pad_to_multiple),
              num_classes=None,
              is_training=None,
              global_pool=False,
              output_stride=None,
              store_non_strided_activations=True,
              scope=scope)
          image_features = self._filter_features(image_features)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        with tf.variable_scope(self._fpn_scope_name,
                               reuse=self._reuse_weights):
          fpn_features = feature_map_generators.fpn_top_down_feature_maps(
              [(key, image_features[key])
               for key in ['block2', 'block3', 'block4']],
              depth=256)
          last_feature_map = fpn_features['top_down_block4']
          coarse_features = {}
          for i in range(5, 7):
            last_feature_map = slim.conv2d(
                last_feature_map,
                num_outputs=256,
                kernel_size=[3, 3],
                stride=2,
                padding='SAME',
                scope='bottom_up_block{}'.format(i))
            coarse_features['bottom_up_block{}'.format(i)] = last_feature_map
    return [fpn_features['top_down_block2'],
            fpn_features['top_down_block3'],
            fpn_features['top_down_block4'],
            coarse_features['bottom_up_block5'],
            coarse_features['bottom_up_block6']] 
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:61,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py

示例9: GetAttentionPrelogit

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def GetAttentionPrelogit(
      self,
      images,
      weight_decay=0.0001,
      attention_nonlinear=_SUPPORTED_ATTENTION_NONLINEARITY[0],
      attention_type=_SUPPORTED_ATTENTION_TYPES[0],
      kernel=1,
      training_resnet=False,
      training_attention=False,
      reuse=False,
      use_batch_norm=True):
    """Constructs attention model on resnet_v1_50.

    Args:
      images: A tensor of size [batch, height, width, channels].
      weight_decay: The parameters for weight_decay regularizer.
      attention_nonlinear: Type of non-linearity on top of the attention
        function.
      attention_type: Type of the attention structure.
      kernel: Convolutional kernel to use in attention layers (eg, [3, 3]).
      training_resnet: Whether or not the Resnet blocks from the model are in
        training mode.
      training_attention: Whether or not the attention part of the model is
        in training mode.
      reuse: Whether or not the layer and its variables should be reused.
      use_batch_norm: Whether or not to use batch normalization.

    Returns:
      prelogits: A tensor of size [batch, 1, 1, channels].
      attention_prob: Attention score after the non-linearity.
      attention_score: Attention score before the non-linearity.
      feature_map: Features extracted from the model, which are not
        l2-normalized.
      end_points: Set of activations for external use.
    """
    # Construct Resnet50 features.
    with slim.arg_scope(
        resnet_v1.resnet_arg_scope(use_batch_norm=use_batch_norm)):
      _, end_points = self.GetResnet50Subnetwork(
          images, is_training=training_resnet, reuse=reuse)

    feature_map = end_points[self._target_layer_type]

    # Construct attention subnetwork on top of features.
    with slim.arg_scope(
        resnet_v1.resnet_arg_scope(
            weight_decay=weight_decay, use_batch_norm=use_batch_norm)):
      with slim.arg_scope([slim.batch_norm], is_training=training_attention):
        (prelogits, attention_prob, attention_score,
         end_points) = self._GetAttentionSubnetwork(
             feature_map,
             end_points,
             attention_nonlinear=attention_nonlinear,
             attention_type=attention_type,
             kernel=kernel,
             reuse=reuse)

    return prelogits, attention_prob, attention_score, feature_map, end_points 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:60,代碼來源:delf_v1.py

示例10: _GetAttentionModel

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def _GetAttentionModel(
      self,
      images,
      num_classes,
      weight_decay=0.0001,
      attention_nonlinear=_SUPPORTED_ATTENTION_NONLINEARITY[0],
      attention_type=_SUPPORTED_ATTENTION_TYPES[0],
      kernel=1,
      training_resnet=False,
      training_attention=False,
      reuse=False):
    """Constructs attention model on resnet_v1_50.

    Args:
      images: A tensor of size [batch, height, width, channels]
      num_classes: The number of output classes.
      weight_decay: The parameters for weight_decay regularizer.
      attention_nonlinear: Type of non-linearity on top of the attention
        function.
      attention_type: Type of the attention structure.
      kernel: Convolutional kernel to use in attention layers (eg, [3, 3]).
      training_resnet: Whether or not the Resnet blocks from the model are in
        training mode.
      training_attention: Whether or not the attention part of the model is in
        training mode.
      reuse: Whether or not the layer and its variables should be reused.

    Returns:
      logits: A tensor of size [batch, num_classes].
      attention_prob: Attention score after the non-linearity.
      attention_score: Attention score before the non-linearity.
      feature_map: Features extracted from the model, which are not
        l2-normalized.
    """

    attention_feat, attention_prob, attention_score, feature_map, _ = (
        self.GetAttentionPrelogit(
            images,
            weight_decay,
            attention_nonlinear=attention_nonlinear,
            attention_type=attention_type,
            kernel=kernel,
            training_resnet=training_resnet,
            training_attention=training_attention,
            reuse=reuse))
    with slim.arg_scope(
        resnet_v1.resnet_arg_scope(
            weight_decay=weight_decay, batch_norm_scale=True)):
      with slim.arg_scope([slim.batch_norm], is_training=training_attention):
        with tf.variable_scope(
            _ATTENTION_VARIABLE_SCOPE, values=[attention_feat], reuse=reuse):
          logits = slim.conv2d(
              attention_feat,
              num_classes, [1, 1],
              activation_fn=None,
              normalizer_fn=None,
              scope='logits')
          logits = tf.squeeze(logits, [1, 2], name='spatial_squeeze')
    return logits, attention_prob, attention_score, feature_map 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:61,代碼來源:delf_v1.py

示例11: extract_features

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          _, image_features = self._resnet_base_fn(
              inputs=ops.pad_to_multiple(preprocessed_inputs,
                                         self._pad_to_multiple),
              num_classes=None,
              is_training=None,
              global_pool=False,
              output_stride=None,
              store_non_strided_activations=True,
              scope=scope)
      image_features = self._filter_features(image_features)
      last_feature_map = image_features['block4']
    with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights):
      with slim.arg_scope(self._conv_hyperparams_fn()):
        for i in range(5, 7):
          last_feature_map = slim.conv2d(
              last_feature_map,
              num_outputs=256,
              kernel_size=[3, 3],
              stride=2,
              padding='SAME',
              scope='block{}'.format(i))
          image_features['bottomup_{}'.format(i)] = last_feature_map
        feature_maps = feature_map_generators.fpn_top_down_feature_maps(
            [
                image_features[key] for key in
                ['block2', 'block3', 'block4', 'bottomup_5', 'bottomup_6']
            ],
            depth=256,
            scope='top_down_features')
    return feature_maps.values() 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:58,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py

示例12: model

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def model(images, weight_decay=1e-5, is_training=True):
    '''
    define the model, we use slim's implemention of resnet
    '''
    images = mean_image_subtraction(images)

    with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
        logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')

    with tf.variable_scope('feature_fusion', values=[end_points.values]):
        batch_norm_params = {
        'decay': 0.997,
        'epsilon': 1e-5,
        'scale': True,
        'is_training': is_training
        }
        with slim.arg_scope([slim.conv2d],
                            activation_fn=tf.nn.relu,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params,
                            weights_regularizer=slim.l2_regularizer(weight_decay)):
            f = [end_points['pool5'], end_points['pool4'],
                 end_points['pool3'], end_points['pool2']]
            for i in range(4):
                print('Shape of f_{} {}'.format(i, f[i].shape))
            g = [None, None, None, None]
            h = [None, None, None, None]
            num_outputs = [None, 128, 64, 32]
            for i in range(4):
                if i == 0:
                    h[i] = f[i]
                else:
                    c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs[i], 1)
                    h[i] = slim.conv2d(c1_1, num_outputs[i], 3)
                if i <= 2:
                    g[i] = unpool(h[i])
                else:
                    g[i] = slim.conv2d(h[i], num_outputs[i], 3)
                print('Shape of h_{} {}, g_{} {}'.format(i, h[i].shape, i, g[i].shape))

            # here we use a slightly different way for regression part,
            # we first use a sigmoid to limit the regression range, and also
            # this is do with the angle map
            F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
            # 4 channel of axis aligned bbox and 1 channel rotation angle
            geo_map = slim.conv2d(g[3], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * FLAGS.text_scale
            angle_map = (slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) - 0.5) * np.pi/2 # angle is between [-45, 45]
            F_geometry = tf.concat([geo_map, angle_map], axis=-1)

    return F_score, F_geometry 
開發者ID:HaozhengLi,項目名稱:EAST_ICPR,代碼行數:52,代碼來源:model.py

示例13: model

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def model(images, weight_decay=1e-5, is_training=True):
    '''
    define the model, we use slim's implemention of resnet
    '''
    images = mean_image_subtraction(images)

    with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
        logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')

    with tf.variable_scope('feature_fusion', values=[end_points.values]):
        batch_norm_params = {
        'decay': 0.997,
        'epsilon': 1e-5,
        'scale': True,
        'is_training': is_training
        }
        with slim.arg_scope([slim.conv2d],
                            activation_fn=tf.nn.relu,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params,
                            weights_regularizer=slim.l2_regularizer(weight_decay)):
            f = [end_points['pool5'], end_points['pool4'],
                 end_points['pool3'], end_points['pool2']]
            for i in range(4):
                print('Shape of f_{} {}'.format(i, f[i].shape))
            g = [None, None, None, None]
            h = [None, None, None, None]
            num_outputs = [None, 128, 64, 32]
            for i in range(4):
                if i == 0:
                    h[i] = f[i]
                else:
                    c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs[i], 1)
                    h[i] = slim.conv2d(c1_1, num_outputs[i], 3)
                if i <= 2:
                    g[i] = unpool(h[i])
                else:
                    g[i] = slim.conv2d(h[i], num_outputs[i], 3)
                print('Shape of h_{} {}, g_{} {}'.format(i, h[i].shape, i, g[i].shape))

            # here we use a slightly different way for regression part,
            # we first use a sigmoid to limit the regression range, and also
            # this is do with the angle map
            F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
            # 4 channel of axis aligned bbox and 1 channel rotation angle
            # Note: donot use FLAGS.text_scale here as UAI Inference does not use FLAGS, instead it uses 512
            geo_map = slim.conv2d(g[3], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * 512
            angle_map = (slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) - 0.5) * np.pi/2 # angle is between [-45, 45]
            F_geometry = tf.concat([geo_map, angle_map], axis=-1)

    return F_score, F_geometry 
開發者ID:ucloud,項目名稱:uai-sdk,代碼行數:53,代碼來源:model.py

示例14: extract_features

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          _, image_features = self._resnet_base_fn(
              inputs=ops.pad_to_multiple(preprocessed_inputs,
                                         self._pad_to_multiple),
              num_classes=None,
              is_training=None,
              global_pool=False,
              output_stride=None,
              store_non_strided_activations=True,
              min_base_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              scope=scope)
          image_features = self._filter_features(image_features)
      depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        with tf.variable_scope(self._fpn_scope_name,
                               reuse=self._reuse_weights):
          base_fpn_max_level = min(self._fpn_max_level, 5)
          feature_block_list = []
          for level in range(self._fpn_min_level, base_fpn_max_level + 1):
            feature_block_list.append('block{}'.format(level - 1))
          fpn_features = feature_map_generators.fpn_top_down_feature_maps(
              [(key, image_features[key]) for key in feature_block_list],
              depth=depth_fn(self._additional_layer_depth))
          feature_maps = []
          for level in range(self._fpn_min_level, base_fpn_max_level + 1):
            feature_maps.append(
                fpn_features['top_down_block{}'.format(level - 1)])
          last_feature_map = fpn_features['top_down_block{}'.format(
              base_fpn_max_level - 1)]
          # Construct coarse features
          for i in range(base_fpn_max_level, self._fpn_max_level):
            last_feature_map = slim.conv2d(
                last_feature_map,
                num_outputs=depth_fn(self._additional_layer_depth),
                kernel_size=[3, 3],
                stride=2,
                padding='SAME',
                scope='bottom_up_block{}'.format(i))
            feature_maps.append(last_feature_map)
    return feature_maps 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:62,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py

示例15: extract_features

# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import resnet_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          with slim.arg_scope(
              [resnet_v1.bottleneck],
              use_bounded_activations=self._use_bounded_activations):
            _, activations = self._resnet_base_fn(
                inputs=ops.pad_to_multiple(preprocessed_inputs,
                                           self._pad_to_multiple),
                num_classes=None,
                is_training=None,
                global_pool=False,
                output_stride=None,
                store_non_strided_activations=True,
                scope=scope)

      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=self._base_feature_map_depth,
            num_layers=self._num_layers,
            image_features={
                'image_features': self._filter_features(activations)['block3']
            })
    return list(feature_maps.values()) 
開發者ID:tensorflow,項目名稱:models,代碼行數:49,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py


注:本文中的nets.resnet_v1.resnet_arg_scope方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。