本文整理匯總了Python中nets.resnet_v1.bottleneck方法的典型用法代碼示例。如果您正苦於以下問題:Python resnet_v1.bottleneck方法的具體用法?Python resnet_v1.bottleneck怎麽用?Python resnet_v1.bottleneck使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.resnet_v1
的用法示例。
在下文中一共展示了resnet_v1.bottleneck方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testEndPointsV1
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import bottleneck [as 別名]
def testEndPointsV1(self):
"""Test the end points of a tiny v1 bottleneck network."""
bottleneck = resnet_v1.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v1/shortcut',
'tiny/block1/unit_1/bottleneck_v1/conv1',
'tiny/block1/unit_1/bottleneck_v1/conv2',
'tiny/block1/unit_1/bottleneck_v1/conv3',
'tiny/block1/unit_2/bottleneck_v1/conv1',
'tiny/block1/unit_2/bottleneck_v1/conv2',
'tiny/block1/unit_2/bottleneck_v1/conv3',
'tiny/block2/unit_1/bottleneck_v1/shortcut',
'tiny/block2/unit_1/bottleneck_v1/conv1',
'tiny/block2/unit_1/bottleneck_v1/conv2',
'tiny/block2/unit_1/bottleneck_v1/conv3',
'tiny/block2/unit_2/bottleneck_v1/conv1',
'tiny/block2/unit_2/bottleneck_v1/conv2',
'tiny/block2/unit_2/bottleneck_v1/conv3']
self.assertItemsEqual(expected, end_points)
示例2: resnet_v1_block
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import bottleneck [as 別名]
def resnet_v1_block(scope, base_depth, num_units, stride):
"""Helper function for creating a resnet_v1 bottleneck block.
Args:
scope: The scope of the block.
base_depth: The depth of the bottleneck layer for each unit.
num_units: The number of units in the block.
stride: The stride of the block, implemented as a stride in the first unit.
All other units have stride=1.
Note that the default slim implementation places the stride in the last unit,
which is less memory efficient and a deviation from the resnet paper.
Returns:
A resnet_v1 bottleneck block.
"""
return resnet_utils.Block(scope, resnet_v1.bottleneck, [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': stride
}] + [{
'depth': base_depth * 4,
'depth_bottleneck': base_depth,
'stride': 1
}] * (num_units - 1))
示例3: _extract_box_classifier_features
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import bottleneck [as 別名]
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope(self._architecture, reuse=self._reuse_weights):
with slim.arg_scope(
resnet_utils.resnet_arg_scope(
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
weight_decay=self._weight_decay)):
with slim.arg_scope([slim.batch_norm], is_training=False):
blocks = [
resnet_utils.Block('block4', resnet_v1.bottleneck, [{
'depth': 2048,
'depth_bottleneck': 512,
'stride': 1
}] * 3)
]
proposal_classifier_features = resnet_utils.stack_blocks_dense(
proposal_feature_maps, blocks)
return proposal_classifier_features
示例4: _extract_box_classifier_features
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import bottleneck [as 別名]
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
with tf.variable_scope(self._architecture, reuse=self._reuse_weights):
with slim.arg_scope(
resnet_utils.resnet_arg_scope(
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
weight_decay=self._weight_decay)):
with slim.arg_scope([slim.batch_norm],
is_training=self._train_batch_norm):
blocks = [
resnet_utils.Block('block4', resnet_v1.bottleneck, [{
'depth': 2048,
'depth_bottleneck': 512,
'stride': 1
}] * 3)
]
proposal_classifier_features = resnet_utils.stack_blocks_dense(
proposal_feature_maps, blocks)
return proposal_classifier_features
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:34,代碼來源:faster_rcnn_resnet_v1_feature_extractor.py
示例5: testAtrousValuesBottleneck
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import bottleneck [as 別名]
def testAtrousValuesBottleneck(self):
self._atrousValues(resnet_v1.bottleneck)
示例6: _resnet_small
# 需要導入模塊: from nets import resnet_v1 [as 別名]
# 或者: from nets.resnet_v1 import bottleneck [as 別名]
def _resnet_small(self,
inputs,
num_classes=None,
is_training=True,
global_pool=True,
output_stride=None,
include_root_block=True,
reuse=None,
scope='resnet_v1_small'):
"""A shallow and thin ResNet v1 for faster tests."""
bottleneck = resnet_v1.bottleneck
blocks = [
resnet_utils.Block(
'block1', bottleneck, [(4, 1, 1)] * 2 + [(4, 1, 2)]),
resnet_utils.Block(
'block2', bottleneck, [(8, 2, 1)] * 2 + [(8, 2, 2)]),
resnet_utils.Block(
'block3', bottleneck, [(16, 4, 1)] * 2 + [(16, 4, 2)]),
resnet_utils.Block(
'block4', bottleneck, [(32, 8, 1)] * 2)]
return resnet_v1.resnet_v1(inputs, blocks, num_classes,
is_training=is_training,
global_pool=global_pool,
output_stride=output_stride,
include_root_block=include_root_block,
reuse=reuse,
scope=scope)