本文整理匯總了Python中nets.nasnet.pnasnet.large_imagenet_config方法的典型用法代碼示例。如果您正苦於以下問題:Python pnasnet.large_imagenet_config方法的具體用法?Python pnasnet.large_imagenet_config怎麽用?Python pnasnet.large_imagenet_config使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.nasnet.pnasnet
的用法示例。
在下文中一共展示了pnasnet.large_imagenet_config方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testNoAuxHeadLargeModel
# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import large_imagenet_config [as 別名]
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = pnasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例2: testOverrideHParamsLargeModel
# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import large_imagenet_config [as 別名]
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = pnasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42])
示例3: testNoAuxHeadLargeModel
# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import large_imagenet_config [as 別名]
def testNoAuxHeadLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = pnasnet.large_imagenet_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例4: testOverrideHParamsLargeModel
# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import large_imagenet_config [as 別名]
def testOverrideHParamsLargeModel(self):
batch_size = 5
height, width = 331, 331
num_classes = 1000
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = pnasnet.large_imagenet_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
_, end_points = pnasnet.build_pnasnet_large(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42])