當前位置: 首頁>>代碼示例>>Python>>正文


Python pnasnet.build_pnasnet_large方法代碼示例

本文整理匯總了Python中nets.nasnet.pnasnet.build_pnasnet_large方法的典型用法代碼示例。如果您正苦於以下問題:Python pnasnet.build_pnasnet_large方法的具體用法?Python pnasnet.build_pnasnet_large怎麽用?Python pnasnet.build_pnasnet_large使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.nasnet.pnasnet的用法示例。


在下文中一共展示了pnasnet.build_pnasnet_large方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBuildLogitsLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testBuildLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:18,代碼來源:pnasnet_test.py

示例2: testBuildLogitsLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testBuildLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random.uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
    auxlogits = end_points['AuxLogits']
    predictions = end_points['Predictions']
    self.assertListEqual(auxlogits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(logits.get_shape().as_list(),
                         [batch_size, num_classes])
    self.assertListEqual(predictions.get_shape().as_list(),
                         [batch_size, num_classes]) 
開發者ID:tensorflow,項目名稱:models,代碼行數:18,代碼來源:pnasnet_test.py

示例3: testBuildNonExistingLayerLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testBuildNonExistingLayerLargeModel(self):
    """Tests that the model is built correctly without unnecessary layers."""
    inputs = tf.random_uniform((5, 331, 331, 3))
    tf.train.create_global_step()
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      pnasnet.build_pnasnet_large(inputs, 1000)
    vars_names = [x.op.name for x in tf.trainable_variables()]
    self.assertIn('cell_stem_0/1x1/weights', vars_names)
    self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:11,代碼來源:pnasnet_test.py

示例4: testBuildPreLogitsLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testBuildPreLogitsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = None
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
    self.assertFalse('AuxLogits' in end_points)
    self.assertFalse('Predictions' in end_points)
    self.assertTrue(net.op.name.startswith('final_layer/Mean'))
    self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320]) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:14,代碼來源:pnasnet_test.py

示例5: testAllEndPointsShapesLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testAllEndPointsShapesLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)

    endpoints_shapes = {'Stem': [batch_size, 42, 42, 540],
                        'Cell_0': [batch_size, 42, 42, 1080],
                        'Cell_1': [batch_size, 42, 42, 1080],
                        'Cell_2': [batch_size, 42, 42, 1080],
                        'Cell_3': [batch_size, 42, 42, 1080],
                        'Cell_4': [batch_size, 21, 21, 2160],
                        'Cell_5': [batch_size, 21, 21, 2160],
                        'Cell_6': [batch_size, 21, 21, 2160],
                        'Cell_7': [batch_size, 21, 21, 2160],
                        'Cell_8': [batch_size, 11, 11, 4320],
                        'Cell_9': [batch_size, 11, 11, 4320],
                        'Cell_10': [batch_size, 11, 11, 4320],
                        'Cell_11': [batch_size, 11, 11, 4320],
                        'global_pool': [batch_size, 4320],
                        # Logits and predictions
                        'AuxLogits': [batch_size, 1000],
                        'Predictions': [batch_size, 1000],
                        'Logits': [batch_size, 1000],
                       }
    self.assertEqual(len(end_points), 17)
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      tf.logging.info('Endpoint name: {}'.format(endpoint_name))
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertIn(endpoint_name, end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:38,代碼來源:pnasnet_test.py

示例6: testNoAuxHeadLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testNoAuxHeadLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    for use_aux_head in (True, False):
      tf.reset_default_graph()
      inputs = tf.random_uniform((batch_size, height, width, 3))
      tf.train.create_global_step()
      config = pnasnet.large_imagenet_config()
      config.set_hparam('use_aux_head', int(use_aux_head))
      with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
        _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
                                                    config=config)
      self.assertEqual('AuxLogits' in end_points, use_aux_head) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:16,代碼來源:pnasnet_test.py

示例7: testOverrideHParamsLargeModel

# 需要導入模塊: from nets.nasnet import pnasnet [as 別名]
# 或者: from nets.nasnet.pnasnet import build_pnasnet_large [as 別名]
def testOverrideHParamsLargeModel(self):
    batch_size = 5
    height, width = 331, 331
    num_classes = 1000
    inputs = tf.random_uniform((batch_size, height, width, 3))
    tf.train.create_global_step()
    config = pnasnet.large_imagenet_config()
    config.set_hparam('data_format', 'NCHW')
    with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
      _, end_points = pnasnet.build_pnasnet_large(
          inputs, num_classes, config=config)
    self.assertListEqual(
        end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42]) 
開發者ID:autoai-org,項目名稱:CVTron,代碼行數:15,代碼來源:pnasnet_test.py


注:本文中的nets.nasnet.pnasnet.build_pnasnet_large方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。