當前位置: 首頁>>代碼示例>>Python>>正文


Python nasnet_utils.NasNetAReductionCell方法代碼示例

本文整理匯總了Python中nets.nasnet.nasnet_utils.NasNetAReductionCell方法的典型用法代碼示例。如果您正苦於以下問題:Python nasnet_utils.NasNetAReductionCell方法的具體用法?Python nasnet_utils.NasNetAReductionCell怎麽用?Python nasnet_utils.NasNetAReductionCell使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.nasnet.nasnet_utils的用法示例。


在下文中一共展示了nasnet_utils.NasNetAReductionCell方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_nasnet_cifar

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_cifar(
    images, num_classes, is_training=True):
  """Build NASNet model for the Cifar Dataset."""
  hparams = _cifar_config(is_training=is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='cifar') 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:43,代碼來源:nasnet.py

示例2: build_nasnet_cifar

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_cifar(images, num_classes,
                       is_training=True,
                       config=None,
                       current_step=None):
  """Build NASNet model for the Cifar Dataset."""
  hparams = cifar_config() if config is None else copy.deepcopy(config)
  _update_hparams(hparams, is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='cifar',
                                current_step=current_step) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:47,代碼來源:nasnet.py

示例3: build_nasnet_mobile

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_mobile(images, num_classes,
                        is_training=True,
                        final_endpoint=None,
                        config=None,
                        current_step=None):
  """Build NASNet Mobile model for the ImageNet Dataset."""
  hparams = (mobile_imagenet_config() if config is None
             else copy.deepcopy(config))
  _update_hparams(hparams, is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2
  # If ImageNet, then add an additional two for the stem cells
  total_num_cells += 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='imagenet',
                                final_endpoint=final_endpoint,
                                current_step=current_step) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:52,代碼來源:nasnet.py

示例4: build_nasnet_large

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_large(images, num_classes,
                       is_training=True,
                       final_endpoint=None,
                       config=None,
                       current_step=None):
  """Build NASNet Large model for the ImageNet Dataset."""
  hparams = (large_imagenet_config() if config is None
             else copy.deepcopy(config))
  _update_hparams(hparams, is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2
  # If ImageNet, then add an additional two for the stem cells
  total_num_cells += 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='imagenet',
                                final_endpoint=final_endpoint,
                                current_step=current_step) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:52,代碼來源:nasnet.py

示例5: build_nasnet_mobile

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_mobile(images, num_classes,
                        is_training=True,
                        final_endpoint=None):
  """Build NASNet Mobile model for the ImageNet Dataset."""
  hparams = _mobile_imagenet_config()

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2
  # If ImageNet, then add an additional two for the stem cells
  total_num_cells += 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='imagenet',
                                final_endpoint=final_endpoint) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:47,代碼來源:nasnet.py

示例6: build_nasnet_large

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_large(images, num_classes,
                       is_training=True,
                       final_endpoint=None):
  """Build NASNet Large model for the ImageNet Dataset."""
  hparams = _large_imagenet_config(is_training=is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2
  # If ImageNet, then add an additional two for the stem cells
  total_num_cells += 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='imagenet',
                                final_endpoint=final_endpoint) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:47,代碼來源:nasnet.py

示例7: build_nasnet_cifar

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_cifar(images, num_classes,
                       is_training=True,
                       config=None):
  """Build NASNet model for the Cifar Dataset."""
  hparams = cifar_config() if config is None else copy.deepcopy(config)
  _update_hparams(hparams, is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='cifar') 
開發者ID:autoai-org,項目名稱:CVTron,代碼行數:45,代碼來源:nasnet.py

示例8: build_nasnet_mobile

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_mobile(images, num_classes,
                        is_training=True,
                        final_endpoint=None,
                        config=None):
  """Build NASNet Mobile model for the ImageNet Dataset."""
  hparams = (mobile_imagenet_config() if config is None
             else copy.deepcopy(config))
  _update_hparams(hparams, is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2
  # If ImageNet, then add an additional two for the stem cells
  total_num_cells += 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='imagenet',
                                final_endpoint=final_endpoint) 
開發者ID:autoai-org,項目名稱:CVTron,代碼行數:50,代碼來源:nasnet.py

示例9: build_nasnet_large

# 需要導入模塊: from nets.nasnet import nasnet_utils [as 別名]
# 或者: from nets.nasnet.nasnet_utils import NasNetAReductionCell [as 別名]
def build_nasnet_large(images, num_classes,
                       is_training=True,
                       final_endpoint=None,
                       config=None):
  """Build NASNet Large model for the ImageNet Dataset."""
  hparams = (large_imagenet_config() if config is None
             else copy.deepcopy(config))
  _update_hparams(hparams, is_training)

  if tf.test.is_gpu_available() and hparams.data_format == 'NHWC':
    tf.logging.info('A GPU is available on the machine, consider using NCHW '
                    'data format for increased speed on GPU.')

  if hparams.data_format == 'NCHW':
    images = tf.transpose(images, [0, 3, 1, 2])

  # Calculate the total number of cells in the network
  # Add 2 for the reduction cells
  total_num_cells = hparams.num_cells + 2
  # If ImageNet, then add an additional two for the stem cells
  total_num_cells += 2

  normal_cell = nasnet_utils.NasNetANormalCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  reduction_cell = nasnet_utils.NasNetAReductionCell(
      hparams.num_conv_filters, hparams.drop_path_keep_prob,
      total_num_cells, hparams.total_training_steps)
  with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm],
                 is_training=is_training):
    with arg_scope([slim.avg_pool2d,
                    slim.max_pool2d,
                    slim.conv2d,
                    slim.batch_norm,
                    slim.separable_conv2d,
                    nasnet_utils.factorized_reduction,
                    nasnet_utils.global_avg_pool,
                    nasnet_utils.get_channel_index,
                    nasnet_utils.get_channel_dim],
                   data_format=hparams.data_format):
      return _build_nasnet_base(images,
                                normal_cell=normal_cell,
                                reduction_cell=reduction_cell,
                                num_classes=num_classes,
                                hparams=hparams,
                                is_training=is_training,
                                stem_type='imagenet',
                                final_endpoint=final_endpoint) 
開發者ID:autoai-org,項目名稱:CVTron,代碼行數:50,代碼來源:nasnet.py


注:本文中的nets.nasnet.nasnet_utils.NasNetAReductionCell方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。