本文整理匯總了Python中nets.nasnet.nasnet.nasnet_cifar_arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python nasnet.nasnet_cifar_arg_scope方法的具體用法?Python nasnet.nasnet_cifar_arg_scope怎麽用?Python nasnet.nasnet_cifar_arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.nasnet.nasnet
的用法示例。
在下文中一共展示了nasnet.nasnet_cifar_arg_scope方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testBuildLogitsCifarModel
# 需要導入模塊: from nets.nasnet import nasnet [as 別名]
# 或者: from nets.nasnet.nasnet import nasnet_cifar_arg_scope [as 別名]
def testBuildLogitsCifarModel(self):
batch_size = 5
height, width = 32, 32
num_classes = 10
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
auxlogits = end_points['AuxLogits']
predictions = end_points['Predictions']
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(predictions.get_shape().as_list(),
[batch_size, num_classes])
示例2: testBuildLogitsCifarModel
# 需要導入模塊: from nets.nasnet import nasnet [as 別名]
# 或者: from nets.nasnet.nasnet import nasnet_cifar_arg_scope [as 別名]
def testBuildLogitsCifarModel(self):
batch_size = 5
height, width = 32, 32
num_classes = 10
inputs = tf.random.uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
auxlogits = end_points['AuxLogits']
predictions = end_points['Predictions']
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertListEqual(predictions.get_shape().as_list(),
[batch_size, num_classes])
示例3: testBuildPreLogitsCifarModel
# 需要導入模塊: from nets.nasnet import nasnet [as 別名]
# 或者: from nets.nasnet.nasnet import nasnet_cifar_arg_scope [as 別名]
def testBuildPreLogitsCifarModel(self):
batch_size = 5
height, width = 32, 32
num_classes = None
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
net, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
self.assertFalse('AuxLogits' in end_points)
self.assertFalse('Predictions' in end_points)
self.assertTrue(net.op.name.startswith('final_layer/Mean'))
self.assertListEqual(net.get_shape().as_list(), [batch_size, 768])
示例4: testAllEndPointsShapesCifarModel
# 需要導入模塊: from nets.nasnet import nasnet [as 別名]
# 或者: from nets.nasnet.nasnet import nasnet_cifar_arg_scope [as 別名]
def testAllEndPointsShapesCifarModel(self):
batch_size = 5
height, width = 32, 32
num_classes = 10
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
_, end_points = nasnet.build_nasnet_cifar(inputs, num_classes)
endpoints_shapes = {'Stem': [batch_size, 32, 32, 96],
'Cell_0': [batch_size, 32, 32, 192],
'Cell_1': [batch_size, 32, 32, 192],
'Cell_2': [batch_size, 32, 32, 192],
'Cell_3': [batch_size, 32, 32, 192],
'Cell_4': [batch_size, 32, 32, 192],
'Cell_5': [batch_size, 32, 32, 192],
'Cell_6': [batch_size, 16, 16, 384],
'Cell_7': [batch_size, 16, 16, 384],
'Cell_8': [batch_size, 16, 16, 384],
'Cell_9': [batch_size, 16, 16, 384],
'Cell_10': [batch_size, 16, 16, 384],
'Cell_11': [batch_size, 16, 16, 384],
'Cell_12': [batch_size, 8, 8, 768],
'Cell_13': [batch_size, 8, 8, 768],
'Cell_14': [batch_size, 8, 8, 768],
'Cell_15': [batch_size, 8, 8, 768],
'Cell_16': [batch_size, 8, 8, 768],
'Cell_17': [batch_size, 8, 8, 768],
'Reduction_Cell_0': [batch_size, 16, 16, 256],
'Reduction_Cell_1': [batch_size, 8, 8, 512],
'global_pool': [batch_size, 768],
# Logits and predictions
'AuxLogits': [batch_size, num_classes],
'Logits': [batch_size, num_classes],
'Predictions': [batch_size, num_classes]}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
tf.logging.info('Endpoint name: {}'.format(endpoint_name))
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例5: testNoAuxHeadCifarModel
# 需要導入模塊: from nets.nasnet import nasnet [as 別名]
# 或者: from nets.nasnet.nasnet import nasnet_cifar_arg_scope [as 別名]
def testNoAuxHeadCifarModel(self):
batch_size = 5
height, width = 32, 32
num_classes = 10
for use_aux_head in (True, False):
tf.reset_default_graph()
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.cifar_config()
config.set_hparam('use_aux_head', int(use_aux_head))
with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
_, end_points = nasnet.build_nasnet_cifar(inputs, num_classes,
config=config)
self.assertEqual('AuxLogits' in end_points, use_aux_head)
示例6: testOverrideHParamsCifarModel
# 需要導入模塊: from nets.nasnet import nasnet [as 別名]
# 或者: from nets.nasnet.nasnet import nasnet_cifar_arg_scope [as 別名]
def testOverrideHParamsCifarModel(self):
batch_size = 5
height, width = 32, 32
num_classes = 10
inputs = tf.random_uniform((batch_size, height, width, 3))
tf.train.create_global_step()
config = nasnet.cifar_config()
config.set_hparam('data_format', 'NCHW')
with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()):
_, end_points = nasnet.build_nasnet_cifar(
inputs, num_classes, config=config)
self.assertListEqual(
end_points['Stem'].shape.as_list(), [batch_size, 96, 32, 32])