本文整理匯總了Python中nets.mobilenet_v1.mobilenet_v1_arg_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python mobilenet_v1.mobilenet_v1_arg_scope方法的具體用法?Python mobilenet_v1.mobilenet_v1_arg_scope怎麽用?Python mobilenet_v1.mobilenet_v1_arg_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.mobilenet_v1
的用法示例。
在下文中一共展示了mobilenet_v1.mobilenet_v1_arg_scope方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_model
# 需要導入模塊: from nets import mobilenet_v1 [as 別名]
# 或者: from nets.mobilenet_v1 import mobilenet_v1_arg_scope [as 別名]
def build_model():
"""Build the mobilenet_v1 model for evaluation.
Returns:
g: graph with rewrites after insertion of quantization ops and batch norm
folding.
eval_ops: eval ops for inference.
variables_to_restore: List of variables to restore from checkpoint.
"""
g = tf.Graph()
with g.as_default():
inputs, labels = imagenet_input(is_training=False)
scope = mobilenet_v1.mobilenet_v1_arg_scope(
is_training=False, weight_decay=0.0)
with slim.arg_scope(scope):
logits, _ = mobilenet_v1.mobilenet_v1(
inputs,
is_training=False,
depth_multiplier=FLAGS.depth_multiplier,
num_classes=FLAGS.num_classes)
if FLAGS.quantize:
tf.contrib.quantize.create_eval_graph()
eval_ops = metrics(logits, labels)
return g, eval_ops
示例2: testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone
# 需要導入模塊: from nets import mobilenet_v1 [as 別名]
# 或者: from nets.mobilenet_v1 import mobilenet_v1_arg_scope [as 別名]
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self):
sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)
self.assertNotIn('is_training', sc[slim.arg_scope_func_key(
slim.batch_norm)])
示例3: testBatchNormScopeDoesHasIsTrainingWhenItsNotNone
# 需要導入模塊: from nets import mobilenet_v1 [as 別名]
# 或者: from nets.mobilenet_v1 import mobilenet_v1_arg_scope [as 別名]
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self):
sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=True)
self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=False)
self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
sc = mobilenet_v1.mobilenet_v1_arg_scope()
self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
示例4: extract_features
# 需要導入模塊: from nets import mobilenet_v1 [as 別名]
# 或者: from nets.mobilenet_v1 import mobilenet_v1_arg_scope [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=0,
num_layers=6,
image_features={
'image_features': image_features['Conv2d_11_pointwise']
})
return feature_maps.values()
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:ssd_mobilenet_v1_ppn_feature_extractor.py
示例5: _extract_box_classifier_features
# 需要導入模塊: from nets import mobilenet_v1 [as 別名]
# 或者: from nets.mobilenet_v1 import mobilenet_v1_arg_scope [as 別名]
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
"""Extracts second stage box classifier features.
Args:
proposal_feature_maps: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, crop_height, crop_width, depth]
representing the feature map cropped to each proposal.
scope: A scope name (unused).
Returns:
proposal_classifier_features: A 4-D float tensor with shape
[batch_size * self.max_num_proposals, height, width, depth]
representing box classifier features for each proposal.
"""
net = proposal_feature_maps
conv_depth = 1024
if self._skip_last_stride:
conv_depth_ratio = float(self._conv_depth_ratio_in_percentage) / 100.0
conv_depth = int(float(conv_depth) * conv_depth_ratio)
depth = lambda d: max(int(d * 1.0), 16)
with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights):
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=self._train_batch_norm,
weight_decay=self._weight_decay)):
with slim.arg_scope(
[slim.conv2d, slim.separable_conv2d], padding='SAME'):
net = slim.separable_conv2d(
net,
depth(conv_depth), [3, 3],
depth_multiplier=1,
stride=2,
scope='Conv2d_12_pointwise')
return slim.separable_conv2d(
net,
depth(conv_depth), [3, 3],
depth_multiplier=1,
stride=1,
scope='Conv2d_13_pointwise')
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:43,代碼來源:faster_rcnn_mobilenet_v1_feature_extractor.py
示例6: head_net
# 需要導入模塊: from nets import mobilenet_v1 [as 別名]
# 或者: from nets.mobilenet_v1 import mobilenet_v1_arg_scope [as 別名]
def head_net(self, blocks, is_training, trainable=True):
normal_initializer = tf.truncated_normal_initializer(0, 0.01)
msra_initializer = tf.contrib.layers.variance_scaling_initializer()
xavier_initializer = tf.contrib.layers.xavier_initializer()
with slim.arg_scope(mobilenet_v1_arg_scope(is_training=is_training)):
out = slim.conv2d_transpose(blocks, 256, [4, 4], stride=2,
trainable=trainable, weights_initializer=normal_initializer,
padding='SAME', activation_fn=tf.nn.relu,
scope='up1')
out = slim.conv2d_transpose(out, 256, [4, 4], stride=2,
trainable=trainable, weights_initializer=normal_initializer,
padding='SAME', activation_fn=tf.nn.relu,
scope='up2')
out = slim.conv2d_transpose(out, 256, [4, 4], stride=2,
trainable=trainable, weights_initializer=normal_initializer,
padding='SAME', activation_fn=tf.nn.relu,
scope='up3')
out = slim.conv2d(out, cfg.nr_skeleton, [1, 1],
trainable=trainable, weights_initializer=msra_initializer,
padding='SAME', normalizer_fn=None, activation_fn=None,
scope='out')
return out