本文整理匯總了Python中nets.mobilenet.mobilenet_v2.mobilenet_base方法的典型用法代碼示例。如果您正苦於以下問題:Python mobilenet_v2.mobilenet_base方法的具體用法?Python mobilenet_v2.mobilenet_base怎麽用?Python mobilenet_v2.mobilenet_base使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.mobilenet.mobilenet_v2
的用法示例。
在下文中一共展示了mobilenet_v2.mobilenet_base方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testWithOutputStride8
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def testWithOutputStride8(self):
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=8,
scope='MobilenetV2')
self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
示例2: testMobilenetBase
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def testMobilenetBase(self):
tf.reset_default_graph()
# Verifies that mobilenet_base returns pre-pooling layer.
with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32):
net, _ = mobilenet_v2.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1)
self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
示例3: testWithOutputStride16
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def testWithOutputStride16(self):
tf.reset_default_graph()
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=16)
self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
示例4: testWithOutputStride8AndExplicitPadding
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def testWithOutputStride8AndExplicitPadding(self):
tf.reset_default_graph()
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=8,
use_explicit_padding=True,
scope='MobilenetV2')
self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
示例5: testWithOutputStride16AndExplicitPadding
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def testWithOutputStride16AndExplicitPadding(self):
tf.reset_default_graph()
out, _ = mobilenet.mobilenet_base(
tf.placeholder(tf.float32, (10, 224, 224, 16)),
conv_defs=mobilenet_v2.V2_DEF,
output_stride=16,
use_explicit_padding=True)
self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
示例6: _image_to_head
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def _image_to_head(self, is_training, reuse=None):
with slim.arg_scope(mobilenet_v2.training_scope(is_training=is_training)):
net, endpoints = mobilenet_v2.mobilenet_base(self._image, conv_defs=CTPN_DEF)
self.variables_to_restore = slim.get_variables_to_restore()
self._act_summaries.append(net)
self._layers['head'] = net
return net
示例7: _mobilenet_v2
# 需要導入模塊: from nets.mobilenet import mobilenet_v2 [as 別名]
# 或者: from nets.mobilenet.mobilenet_v2 import mobilenet_base [as 別名]
def _mobilenet_v2(net,
depth_multiplier,
output_stride,
reuse=None,
scope=None,
final_endpoint=None):
"""Auxiliary function to add support for 'reuse' to mobilenet_v2.
Args:
net: Input tensor of shape [batch_size, height, width, channels].
depth_multiplier: Float multiplier for the depth (number of channels)
for all convolution ops. The value must be greater than zero. Typical
usage will be to set this value in (0, 1) to reduce the number of
parameters or computation cost of the model.
output_stride: An integer that specifies the requested ratio of input to
output spatial resolution. If not None, then we invoke atrous convolution
if necessary to prevent the network from reducing the spatial resolution
of the activation maps. Allowed values are 8 (accurate fully convolutional
mode), 16 (fast fully convolutional mode), 32 (classification mode).
reuse: Reuse model variables.
scope: Optional variable scope.
final_endpoint: The endpoint to construct the network up to.
Returns:
Features extracted by MobileNetv2.
"""
with tf.variable_scope(
scope, 'MobilenetV2', [net], reuse=reuse) as scope:
return mobilenet_v2.mobilenet_base(
net,
conv_defs=mobilenet_v2.V2_DEF,
depth_multiplier=depth_multiplier,
min_depth=8 if depth_multiplier == 1.0 else 1,
divisible_by=8 if depth_multiplier == 1.0 else 1,
final_endpoint=final_endpoint or _MOBILENET_V2_FINAL_ENDPOINT,
output_stride=output_stride,
scope=scope)
# A map from network name to network function.