本文整理匯總了Python中nets.inception_v3.inception_v3_base方法的典型用法代碼示例。如果您正苦於以下問題:Python inception_v3.inception_v3_base方法的具體用法?Python inception_v3.inception_v3_base怎麽用?Python inception_v3.inception_v3_base使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.inception_v3
的用法示例。
在下文中一共展示了inception_v3.inception_v3_base方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: extract_features
# 需要導入模塊: from nets import inception_v3 [as 別名]
# 或者: from nets.inception_v3 import inception_v3_base [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
_, image_features = inception_v3.inception_v3_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_7c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例2: extract_features
# 需要導入模塊: from nets import inception_v3 [as 別名]
# 或者: from nets.inception_v3 import inception_v3_base [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams):
with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
_, image_features = inception_v3.inception_v3_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_7c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:39,代碼來源:ssd_inception_v3_feature_extractor.py
示例3: extract_features
# 需要導入模塊: from nets import inception_v3 [as 別名]
# 或者: from nets.inception_v3 import inception_v3_base [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs.get_shape().assert_has_rank(4)
shape_assert = tf.Assert(
tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
['image size must at least be 33 in both height and width.'])
feature_map_layout = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128],
}
with tf.control_dependencies([shape_assert]):
with slim.arg_scope(self._conv_hyperparams):
with tf.variable_scope('InceptionV3',
reuse=self._reuse_weights) as scope:
_, image_features = inception_v3.inception_v3_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_7c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例4: extract_features
# 需要導入模塊: from nets import inception_v3 [as 別名]
# 或者: from nets.inception_v3 import inception_v3_base [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, -1, 512, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
_, image_features = inception_v3.inception_v3_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_7c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:40,代碼來源:ssd_inception_v3_feature_extractor.py
示例5: extract_features
# 需要導入模塊: from nets import inception_v3 [as 別名]
# 或者: from nets.inception_v3 import inception_v3_base [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''
][:self._num_layers],
'layer_depth': [-1, -1, -1, 512, 256, 128][:self._num_layers],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
_, image_features = inception_v3.inception_v3_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_7c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return list(feature_maps.values())