當前位置: 首頁>>代碼示例>>Python>>正文


Python inception_resnet_v2.inception_resnet_v2_base方法代碼示例

本文整理匯總了Python中nets.inception_resnet_v2.inception_resnet_v2_base方法的典型用法代碼示例。如果您正苦於以下問題:Python inception_resnet_v2.inception_resnet_v2_base方法的具體用法?Python inception_resnet_v2.inception_resnet_v2_base怎麽用?Python inception_resnet_v2.inception_resnet_v2_base使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.inception_resnet_v2的用法示例。


在下文中一共展示了inception_resnet_v2.inception_resnet_v2_base方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _extract_proposal_features

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 別名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features.

    Extracts features using the first half of the Inception Resnet v2 network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
    Raises:
      InvalidArgumentError: If the spatial size of `preprocessed_inputs`
        (height or width) is less than 33.
      ValueError: If the created network is missing the required activation.
    """
    if len(preprocessed_inputs.get_shape().as_list()) != 4:
      raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
                       'tensor of shape %s' % preprocessed_inputs.get_shape())

    with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
        weight_decay=self._weight_decay)):
      # Forces is_training to False to disable batch norm update.
      with slim.arg_scope([slim.batch_norm], is_training=False):
        with tf.variable_scope('InceptionResnetV2',
                               reuse=self._reuse_weights) as scope:
          rpn_feature_map, _ = (
              inception_resnet_v2.inception_resnet_v2_base(
                  preprocessed_inputs, final_endpoint='PreAuxLogits',
                  scope=scope, output_stride=self._first_stage_features_stride,
                  align_feature_maps=True))
    return rpn_feature_map 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:38,代碼來源:faster_rcnn_inception_resnet_v2_feature_extractor.py

示例2: _extract_proposal_features

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 別名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features.

    Extracts features using the first half of the Inception Resnet v2 network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
    Raises:
      InvalidArgumentError: If the spatial size of `preprocessed_inputs`
        (height or width) is less than 33.
      ValueError: If the created network is missing the required activation.
    """
    if len(preprocessed_inputs.get_shape().as_list()) != 4:
      raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
                       'tensor of shape %s' % preprocessed_inputs.get_shape())

    with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
        weight_decay=self._weight_decay)):
      # Forces is_training to False to disable batch norm update.
      with slim.arg_scope([slim.batch_norm],
                          is_training=self._train_batch_norm):
        with tf.variable_scope('InceptionResnetV2',
                               reuse=self._reuse_weights) as scope:
          return inception_resnet_v2.inception_resnet_v2_base(
              preprocessed_inputs, final_endpoint='PreAuxLogits',
              scope=scope, output_stride=self._first_stage_features_stride,
              align_feature_maps=True) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:faster_rcnn_inception_resnet_v2_feature_extractor.py

示例3: _extract_proposal_features

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 別名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features.

    Extracts features using the first half of the Inception Resnet v2 network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
    Raises:
      InvalidArgumentError: If the spatial size of `preprocessed_inputs`
        (height or width) is less than 33.
      ValueError: If the created network is missing the required activation.
    """
    if len(preprocessed_inputs.get_shape().as_list()) != 4:
      raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
                       'tensor of shape %s' % preprocessed_inputs.get_shape())

    with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
        weight_decay=self._weight_decay)):
      # Forces is_training to False to disable batch norm update.
      with slim.arg_scope([slim.batch_norm],
                          is_training=self._train_batch_norm):
        with tf.variable_scope('InceptionResnetV2',
                               reuse=self._reuse_weights) as scope:
          rpn_feature_map, _ = (
              inception_resnet_v2.inception_resnet_v2_base(
                  preprocessed_inputs, final_endpoint='PreAuxLogits',
                  scope=scope, output_stride=self._first_stage_features_stride,
                  align_feature_maps=True))
    return rpn_feature_map 
開發者ID:danmacnish,項目名稱:cartoonify,代碼行數:39,代碼來源:faster_rcnn_inception_resnet_v2_feature_extractor.py

示例4: _extract_proposal_features

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2_base [as 別名]
def _extract_proposal_features(self, preprocessed_inputs, scope):
    """Extracts first stage RPN features.

    Extracts features using the first half of the Inception Resnet v2 network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
    Raises:
      InvalidArgumentError: If the spatial size of `preprocessed_inputs`
        (height or width) is less than 33.
      ValueError: If the created network is missing the required activation.
    """
    if len(preprocessed_inputs.get_shape().as_list()) != 4:
      raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
                       'tensor of shape %s' % preprocessed_inputs.get_shape())

    with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope(
        weight_decay=self._weight_decay, trainable=self._is_training)):
      # Forces is_training to False to disable batch norm update.
      with slim.arg_scope([slim.batch_norm], is_training=False):
        with tf.variable_scope('InceptionResnetV2',
                               reuse=self._reuse_weights) as scope:
          rpn_feature_map, _ = (
              inception_resnet_v2.inception_resnet_v2_base(
                  preprocessed_inputs, final_endpoint='PreAuxLogits',
                  scope=scope, output_stride=self._first_stage_features_stride,
                  align_feature_maps=True))
    return rpn_feature_map 
開發者ID:wonheeML,項目名稱:mtl-ssl,代碼行數:38,代碼來源:faster_rcnn_inception_resnet_v2_feature_extractor.py


注:本文中的nets.inception_resnet_v2.inception_resnet_v2_base方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。