當前位置: 首頁>>代碼示例>>Python>>正文


Python inception_resnet_v2.inception_resnet_v2方法代碼示例

本文整理匯總了Python中nets.inception_resnet_v2.inception_resnet_v2方法的典型用法代碼示例。如果您正苦於以下問題:Python inception_resnet_v2.inception_resnet_v2方法的具體用法?Python inception_resnet_v2.inception_resnet_v2怎麽用?Python inception_resnet_v2.inception_resnet_v2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.inception_resnet_v2的用法示例。


在下文中一共展示了inception_resnet_v2.inception_resnet_v2方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: graph_small

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2 [as 別名]
def graph_small(x, target_class_input, i, x_max, x_min, grad):
  eps = 2.0 * FLAGS.max_epsilon / 255.0
  alpha = eps / 28
  momentum = FLAGS.momentum
  num_classes = 1001

  with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
    logits_v3, end_points_v3 = inception_v3.inception_v3(
        x, num_classes=num_classes, is_training=False)

  with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
    logits_ensadv_res_v2, end_points_ensadv_res_v2 = inception_resnet_v2.inception_resnet_v2(
        x, num_classes=num_classes, is_training=False, scope='EnsAdvInceptionResnetV2')
            
  one_hot_target_class = tf.one_hot(target_class_input, num_classes)

  logits = (logits_v3 + 2 * logits_ensadv_res_v2) / 3
  auxlogits = (end_points_v3['AuxLogits'] + 2 * end_points_ensadv_res_v2['AuxLogits']) / 3
  cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class,
                                                  logits,
                                                  label_smoothing=0.0,
                                                  weights=1.0)
  cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class,
                                                   auxlogits,
                                                   label_smoothing=0.0,
                                                   weights=0.4)
  noise = tf.gradients(cross_entropy, x)[0]
  noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1])
  noise = momentum * grad + noise
  noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1])
  x = x - alpha * tf.clip_by_value(tf.round(noise), -2, 2)
  x = tf.clip_by_value(x, x_min, x_max)
  i = tf.add(i, 1)
  return x, target_class_input, i, x_max, x_min, noise 
開發者ID:dongyp13,項目名稱:Targeted-Adversarial-Attack,代碼行數:36,代碼來源:target_attack.py

示例2: model

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2 [as 別名]
def model(images, weight_decay=1e-5, is_training=True):
    images = mean_image_subtraction(images)
    with slim.arg_scope(inception_arg_scope(weight_decay=weight_decay)):
        logits, end_points = inception_resnet_v2(images, num_classes=None, is_training=is_training)
    for key in end_points.keys():
        print(key, end_points[key])
    return logits, end_points
    # print(end_points.keys())
    # with tf.variable_scope('feature_fusion', values=[end_points.values()]):
    #     batch_norm_params = {
    #         'decay': 0.997,
    #         'epsilon': 1e-5,
    #         'scale': True,
    #         'is_training': is_training
    #     }
    #     with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm,
    #                         normalizer_params=batch_norm_params, weights_regularizer=slim.l2_regularizer(weight_decay)):
    #         f = [end_points['Scale-5'],     # 16
    #              end_points['Scale-4'],  # 32
    #              end_points['Scale-3'],  # 64
    #              end_points['Scale-2'],     # 128
    #              end_points['Scale-1']]     # 256
    #         g = [None, None, None, None, None]
    #         h = [None, None, None, None, None]
    #         num_outputs = [None, 1024, 128, 64, 32]
    #         for i in range(5):
    #             if i == 0:
    #                 h[i] = f[i]
    #             else:
    #                 # 相當於一個融合,減少維度的過程,kernel size等於1
    #                 c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs=num_outputs[i], kernel_size=1)
    #                 h[i] = slim.conv2d(c1_1, num_outputs=num_outputs[i], kernel_size=3)
    #             if i <= 3:
    #                 g[i] = unpool(h[i])
    #                 # g[i] = slim.conv2d(g[i], num_outputs[i + 1], 1)
    #                 # g[i] = slim.conv2d(g[i], num_outputs[i + 1], 3)
    #             else:
    #                 g[i] = slim.conv2d(h[i], num_outputs[i], 3)
    #             print("Shape of f_{} {}, h_{} {}, g_{} {}".format(i, f[i].shape, i, h[i].shape, i, g[i].shape))
    #         F_score = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
    #         if FLAGS.geometry == 'RBOX':
    #             # 4 channel of axis aligned bbox and 1 channel rotation angle
    #             print 'RBOX'
    #             geo_map = slim.conv2d(g[4], 4, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None) * FLAGS.text_scale
    #             angle_map = (slim.conv2d(g[4], 1, 1, activation_fn=tf.nn.sigmoid,
    #                                      normalizer_fn=None) - 0.5) * np.pi / 2  # angle is between [-45, 45]
    #             F_geometry = tf.concat([geo_map, angle_map], axis=-1)
    #         else:
    #             # LD modify
    #             # concated_score_map = tf.concat([F_score, g[3]], axis=-1)
    #             # F_geometry = slim.conv2d(g[4], 8, 1, activation_fn=parametric_relu,
    #             #                          normalizer_fn=None) * FLAGS.text_scale
    #             assert False
    #     return F_score, F_geometry 
開發者ID:UpCoder,項目名稱:ICPR_TextDection,代碼行數:56,代碼來源:model.py

示例3: graph_large

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2 [as 別名]
def graph_large(x, target_class_input, i, x_max, x_min, grad):
  eps = 2.0 * FLAGS.max_epsilon / 255.0
  alpha = eps / 12
  momentum = FLAGS.momentum
  num_classes = 1001

  with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
    logits_v3, end_points_v3 = inception_v3.inception_v3(
        x, num_classes=num_classes, is_training=False)

  with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
    logits_adv_v3, end_points_adv_v3 = inception_v3.inception_v3(
        x, num_classes=num_classes, is_training=False, scope='AdvInceptionV3')

  with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
    logits_ens3_adv_v3, end_points_ens3_adv_v3 = inception_v3.inception_v3(
        x, num_classes=num_classes, is_training=False, scope='Ens3AdvInceptionV3')

  with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
    logits_ens4_adv_v3, end_points_ens4_adv_v3 = inception_v3.inception_v3(
        x, num_classes=num_classes, is_training=False, scope='Ens4AdvInceptionV3')

  with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
    logits_ensadv_res_v2, end_points_ensadv_res_v2 = inception_resnet_v2.inception_resnet_v2(
        x, num_classes=num_classes, is_training=False, scope='EnsAdvInceptionResnetV2')
            
  one_hot_target_class = tf.one_hot(target_class_input, num_classes)

  logits = (4 * logits_v3 + logits_adv_v3 + logits_ens3_adv_v3 + logits_ens4_adv_v3 + 4 * logits_ensadv_res_v2) / 11
  auxlogits = (4 * end_points_v3['AuxLogits'] + end_points_adv_v3['AuxLogits'] + end_points_ens3_adv_v3['AuxLogits'] + end_points_ens4_adv_v3['AuxLogits'] + 4 * end_points_ensadv_res_v2['AuxLogits']) / 11
  cross_entropy = tf.losses.softmax_cross_entropy(one_hot_target_class,
                                                  logits,
                                                  label_smoothing=0.0,
                                                  weights=1.0)
  cross_entropy += tf.losses.softmax_cross_entropy(one_hot_target_class,
                                                   auxlogits,
                                                   label_smoothing=0.0,
                                                   weights=0.4)
  noise = tf.gradients(cross_entropy, x)[0]
  noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1])
  noise = momentum * grad + noise
  noise = noise / tf.reshape(tf.contrib.keras.backend.std(tf.reshape(noise, [FLAGS.batch_size, -1]), axis=1), [FLAGS.batch_size, 1, 1, 1])
  x = x - alpha * tf.clip_by_value(tf.round(noise), -2, 2)
  x = tf.clip_by_value(x, x_min, x_max)
  i = tf.add(i, 1)
  return x, target_class_input, i, x_max, x_min, noise 
開發者ID:dongyp13,項目名稱:Targeted-Adversarial-Attack,代碼行數:48,代碼來源:target_attack.py

示例4: graph

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2 [as 別名]
def graph(x, y, i, x_max, x_min, grad):
    eps = 2.0 * FLAGS.max_epsilon / 255.0
    num_iter = FLAGS.num_iter
    alpha = eps / num_iter
    momentum = FLAGS.momentum
    num_classes = 1001

    # should keep original x here for output

    with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
        logits_v3, end_points_v3 = inception_v3.inception_v3(
            input_diversity(x), num_classes=num_classes, is_training=False)

    with slim.arg_scope(inception_v4.inception_v4_arg_scope()):
        logits_v4, end_points_v4 = inception_v4.inception_v4(
            input_diversity(x), num_classes=num_classes, is_training=False)

    with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
        logits_res_v2, end_points_res_v2 = inception_resnet_v2.inception_resnet_v2(
            input_diversity(x), num_classes=num_classes, is_training=False, reuse=True)

    with slim.arg_scope(resnet_v2.resnet_arg_scope()):
        logits_resnet, end_points_resnet = resnet_v2.resnet_v2_152(
            input_diversity(x), num_classes=num_classes, is_training=False)

    logits = (logits_v3 + logits_v4 + logits_res_v2 + logits_resnet) / 4
    auxlogits = (end_points_v3['AuxLogits'] + end_points_v4['AuxLogits'] + end_points_res_v2['AuxLogits']) / 3
    cross_entropy = tf.losses.softmax_cross_entropy(y,
                                                    logits,
                                                    label_smoothing=0.0,
                                                    weights=1.0)
    cross_entropy += tf.losses.softmax_cross_entropy(y,
                                                     auxlogits,
                                                     label_smoothing=0.0,
                                                     weights=0.4)
    noise = tf.gradients(cross_entropy, x)[0]
    noise = tf.nn.depthwise_conv2d(noise, stack_kernel, strides=[1, 1, 1, 1], padding='SAME')
    noise = noise / tf.reduce_mean(tf.abs(noise), [1, 2, 3], keep_dims=True)
    noise = momentum * grad + noise
    x = x + alpha * tf.sign(noise)
    x = tf.clip_by_value(x, x_min, x_max)
    i = tf.add(i, 1)
    return x, y, i, x_max, x_min, noise 
開發者ID:dongyp13,項目名稱:Translation-Invariant-Attacks,代碼行數:45,代碼來源:attack_iter.py

示例5: main

# 需要導入模塊: from nets import inception_resnet_v2 [as 別名]
# 或者: from nets.inception_resnet_v2 import inception_resnet_v2 [as 別名]
def main(_):
    # Images for inception classifier are normalized to be in [-1, 1] interval,
    # eps is a difference between pixels so it should be in [0, 2] interval.
    # Renormalizing epsilon from [0, 255] to [0, 2].
    eps = 2.0 * FLAGS.max_epsilon / 255.0
    num_classes = 1001
    batch_shape = [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, 3]

    tf.logging.set_verbosity(tf.logging.INFO)

    print(time.time() - start_time)

    with tf.Graph().as_default():
        # Prepare graph
        x_input = tf.placeholder(tf.float32, shape=batch_shape)
        x_max = tf.clip_by_value(x_input + eps, -1.0, 1.0)
        x_min = tf.clip_by_value(x_input - eps, -1.0, 1.0)

        with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope()):
            _, end_points = inception_resnet_v2.inception_resnet_v2(
                x_input, num_classes=num_classes, is_training=False)

        predicted_labels = tf.argmax(end_points['Predictions'], 1)
        y = tf.one_hot(predicted_labels, num_classes)

        i = tf.constant(0)
        grad = tf.zeros(shape=batch_shape)
        x_adv, _, _, _, _, _ = tf.while_loop(stop, graph, [x_input, y, i, x_max, x_min, grad])

        # Run computation
        s1 = tf.train.Saver(slim.get_model_variables(scope='InceptionV3'))
        s5 = tf.train.Saver(slim.get_model_variables(scope='InceptionV4'))
        s6 = tf.train.Saver(slim.get_model_variables(scope='InceptionResnetV2'))
        s8 = tf.train.Saver(slim.get_model_variables(scope='resnet_v2'))

        with tf.Session() as sess:
            s1.restore(sess, FLAGS.checkpoint_path_inception_v3)
            s5.restore(sess, FLAGS.checkpoint_path_inception_v4)
            s6.restore(sess, FLAGS.checkpoint_path_inception_resnet_v2)
            s8.restore(sess, FLAGS.checkpoint_path_resnet)
            print(time.time() - start_time)

            for filenames, images in load_images(FLAGS.input_dir, batch_shape):
                adv_images = sess.run(x_adv, feed_dict={x_input: images})
                save_images(adv_images, filenames, FLAGS.output_dir)

        print(time.time() - start_time) 
開發者ID:dongyp13,項目名稱:Translation-Invariant-Attacks,代碼行數:49,代碼來源:attack_iter.py


注:本文中的nets.inception_resnet_v2.inception_resnet_v2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。