當前位置: 首頁>>代碼示例>>Python>>正文


Python inception.inception_v2_base方法代碼示例

本文整理匯總了Python中nets.inception.inception_v2_base方法的典型用法代碼示例。如果您正苦於以下問題:Python inception.inception_v2_base方法的具體用法?Python inception.inception_v2_base怎麽用?Python inception.inception_v2_base使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.inception的用法示例。


在下文中一共展示了inception.inception_v2_base方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBuildEndPointsWithUseSeparableConvolutionFalse

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testBuildEndPointsWithUseSeparableConvolutionFalse(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2_base(inputs)

    endpoint_keys = [
        key for key in end_points.keys()
        if key.startswith('Mixed') or key.startswith('Conv')
    ]

    _, end_points_with_replacement = inception.inception_v2_base(
        inputs, use_separable_conv=False)

    # The endpoint shapes must be equal to the original shape even when the
    # separable convolution is replaced with a normal convolution.
    for key in endpoint_keys:
      original_shape = end_points[key].get_shape().as_list()
      self.assertTrue(key in end_points_with_replacement)
      new_shape = end_points_with_replacement[key].get_shape().as_list()
      self.assertListEqual(original_shape, new_shape) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:24,代碼來源:inception_v2_test.py

示例2: testBuildBaseNetwork

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_5c, end_points = inception.inception_v2_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b',
                          'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a',
                          'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7',
                          'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3',
                          'MaxPool_3a_3x3']
    self.assertItemsEqual(end_points.keys(), expected_endpoints) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:17,代碼來源:inception_v2_test.py

示例3: testBuildOnlyUptoFinalEndpoint

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
                 'Mixed_5a', 'Mixed_5b', 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v2_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV2/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:17,代碼來源:inception_v2_test.py

示例4: testBuildAndCheckAllEndPointsUptoMixed5c

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2_base(inputs,
                                                final_endpoint='Mixed_5c')
    endpoints_shapes = {'Mixed_3b': [batch_size, 28, 28, 256],
                        'Mixed_3c': [batch_size, 28, 28, 320],
                        'Mixed_4a': [batch_size, 14, 14, 576],
                        'Mixed_4b': [batch_size, 14, 14, 576],
                        'Mixed_4c': [batch_size, 14, 14, 576],
                        'Mixed_4d': [batch_size, 14, 14, 576],
                        'Mixed_4e': [batch_size, 14, 14, 576],
                        'Mixed_5a': [batch_size, 7, 7, 1024],
                        'Mixed_5b': [batch_size, 7, 7, 1024],
                        'Mixed_5c': [batch_size, 7, 7, 1024],
                        'Conv2d_1a_7x7': [batch_size, 112, 112, 64],
                        'MaxPool_2a_3x3': [batch_size, 56, 56, 64],
                        'Conv2d_2b_1x1': [batch_size, 56, 56, 64],
                        'Conv2d_2c_3x3': [batch_size, 56, 56, 192],
                        'MaxPool_3a_3x3': [batch_size, 28, 28, 192]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:30,代碼來源:inception_v2_test.py

示例5: testModelHasExpectedNumberOfParameters

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
    inputs = tf.random_uniform((batch_size, height, width, 3))
    with slim.arg_scope(inception.inception_v2_arg_scope()):
      inception.inception_v2_base(inputs)
    total_params, _ = slim.model_analyzer.analyze_vars(
        slim.get_model_variables())
    self.assertAlmostEqual(10173112, total_params) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:11,代碼來源:inception_v2_test.py

示例6: testBuildOnlyUptoFinalEndpoint

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 224, 224
    endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                 'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
                 'Mixed_5a', 'Mixed_5b', 'Mixed_5c']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_v2_base(
            inputs, final_endpoint=endpoint)
        self.assertTrue(out_tensor.op.name.startswith(
            'InceptionV2/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points.keys()) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:17,代碼來源:inception_v2_test.py

示例7: testBuildErrorsForDataFormats

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2_base [as 別名]
def testBuildErrorsForDataFormats(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))

    # 'NCWH' data format is not supported.
    with self.assertRaises(ValueError):
      _ = inception.inception_v2_base(inputs, data_format='NCWH')

    # 'NCHW' data format is not supported for separable convolution.
    with self.assertRaises(ValueError):
      _ = inception.inception_v2_base(inputs, data_format='NCHW') 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:15,代碼來源:inception_v2_test.py


注:本文中的nets.inception.inception_v2_base方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。