當前位置: 首頁>>代碼示例>>Python>>正文


Python inception.inception_v2方法代碼示例

本文整理匯總了Python中nets.inception.inception_v2方法的典型用法代碼示例。如果您正苦於以下問題:Python inception.inception_v2方法的具體用法?Python inception.inception_v2怎麽用?Python inception.inception_v2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.inception的用法示例。


在下文中一共展示了inception.inception_v2方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBuildEndPointsWithDepthMultiplierLessThanOne

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v2(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=0.5)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(0.5 * original_depth, new_depth) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:inception_v2_test.py

示例2: testBuildEndPointsWithDepthMultiplierGreaterThanOne

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
    batch_size = 5
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2(inputs, num_classes)

    endpoint_keys = [key for key in end_points.keys()
                     if key.startswith('Mixed') or key.startswith('Conv')]

    _, end_points_with_multiplier = inception.inception_v2(
        inputs, num_classes, scope='depth_multiplied_net',
        depth_multiplier=2.0)

    for key in endpoint_keys:
      original_depth = end_points[key].get_shape().as_list()[3]
      new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
      self.assertEqual(2.0 * original_depth, new_depth) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:inception_v2_test.py

示例3: testUnknowBatchSize

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testUnknowBatchSize(self):
    batch_size = 1
    height, width = 224, 224
    num_classes = 1000

    inputs = tf.placeholder(tf.float32, (None, height, width, 3))
    logits, _ = inception.inception_v2(inputs, num_classes)
    self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, num_classes])
    images = tf.random_uniform((batch_size, height, width, 3))

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEquals(output.shape, (batch_size, num_classes)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_v2_test.py

示例4: testTrainEvalWithReuse

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
    inception.inception_v2(train_inputs, num_classes)
    eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception.inception_v2(eval_inputs, num_classes, reuse=True)
    predictions = tf.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_v2_test.py

示例5: testUnknownImageShape

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:19,代碼來源:inception_v2_test.py

示例6: testGlobalPoolUnknownImageShape

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testGlobalPoolUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 1
    height, width = 250, 300
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024]) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:20,代碼來源:inception_v2_test.py

示例7: testGlobalPoolUnknownImageShape

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_v2 [as 別名]
def testGlobalPoolUnknownImageShape(self):
    tf.reset_default_graph()
    batch_size = 2
    height, width = 300, 400
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception.inception_v2(inputs, num_classes,
                                                  global_pool=True)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      tf.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 10, 13, 1024]) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:20,代碼來源:inception_v2_test.py


注:本文中的nets.inception.inception_v2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。