當前位置: 首頁>>代碼示例>>Python>>正文


Python inception.inception_resnet_v2_base方法代碼示例

本文整理匯總了Python中nets.inception.inception_resnet_v2_base方法的典型用法代碼示例。如果您正苦於以下問題:Python inception.inception_resnet_v2_base方法的具體用法?Python inception.inception_resnet_v2_base怎麽用?Python inception.inception_resnet_v2_base使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.inception的用法示例。


在下文中一共展示了inception.inception_resnet_v2_base方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBuildOnlyUptoFinalEndpoint

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2_base [as 別名]
def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
                 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint=endpoint)
        if endpoint != 'PreAuxLogits':
          self.assertTrue(out_tensor.op.name.startswith(
              'InceptionResnetV2/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_resnet_v2_test.py

示例2: testBuildAndCheckAllEndPointsUptoPreAuxLogits

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2_base [as 別名]
def testBuildAndCheckAllEndPointsUptoPreAuxLogits(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits')
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
                        'Conv2d_2a_3x3': [5, 147, 147, 32],
                        'Conv2d_2b_3x3': [5, 147, 147, 64],
                        'MaxPool_3a_3x3': [5, 73, 73, 64],
                        'Conv2d_3b_1x1': [5, 73, 73, 80],
                        'Conv2d_4a_3x3': [5, 71, 71, 192],
                        'MaxPool_5a_3x3': [5, 35, 35, 192],
                        'Mixed_5b': [5, 35, 35, 320],
                        'Mixed_6a': [5, 17, 17, 1088],
                        'PreAuxLogits': [5, 17, 17, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:inception_resnet_v2_test.py

示例3: testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2_base [as 別名]
def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 150, 150, 32],
                        'Conv2d_2a_3x3': [5, 150, 150, 32],
                        'Conv2d_2b_3x3': [5, 150, 150, 64],
                        'MaxPool_3a_3x3': [5, 75, 75, 64],
                        'Conv2d_3b_1x1': [5, 75, 75, 80],
                        'Conv2d_4a_3x3': [5, 75, 75, 192],
                        'MaxPool_5a_3x3': [5, 38, 38, 192],
                        'Mixed_5b': [5, 38, 38, 320],
                        'Mixed_6a': [5, 19, 19, 1088],
                        'PreAuxLogits': [5, 19, 19, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:inception_resnet_v2_test.py

示例4: testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2_base [as 別名]
def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(self):
    batch_size = 5
    height, width = 299, 299

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_resnet_v2_base(
        inputs, final_endpoint='PreAuxLogits', output_stride=8)
    endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
                        'Conv2d_2a_3x3': [5, 147, 147, 32],
                        'Conv2d_2b_3x3': [5, 147, 147, 64],
                        'MaxPool_3a_3x3': [5, 73, 73, 64],
                        'Conv2d_3b_1x1': [5, 73, 73, 80],
                        'Conv2d_4a_3x3': [5, 71, 71, 192],
                        'MaxPool_5a_3x3': [5, 35, 35, 192],
                        'Mixed_5b': [5, 35, 35, 320],
                        'Mixed_6a': [5, 33, 33, 1088],
                        'PreAuxLogits': [5, 33, 33, 1088]
                       }

    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:inception_resnet_v2_test.py

示例5: testBuildOnlyUptoFinalEndpoint

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2_base [as 別名]
def testBuildOnlyUptoFinalEndpoint(self):
    batch_size = 5
    height, width = 299, 299
    endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
                 'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
                 'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_6a',
                 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    for index, endpoint in enumerate(endpoints):
      with tf.Graph().as_default():
        inputs = tf.random_uniform((batch_size, height, width, 3))
        out_tensor, end_points = inception.inception_resnet_v2_base(
            inputs, final_endpoint=endpoint)
        if endpoint != 'PreAuxLogits':
          self.assertTrue(out_tensor.op.name.startswith(
              'InceptionResnetV2/' + endpoint))
        self.assertItemsEqual(endpoints[:index+1], end_points.keys()) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:18,代碼來源:inception_resnet_v2_test.py


注:本文中的nets.inception.inception_resnet_v2_base方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。