本文整理匯總了Python中nets.inception.inception_resnet_v2方法的典型用法代碼示例。如果您正苦於以下問題:Python inception.inception_resnet_v2方法的具體用法?Python inception.inception_resnet_v2怎麽用?Python inception.inception_resnet_v2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類nets.inception
的用法示例。
在下文中一共展示了inception.inception_resnet_v2方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testBuildLogits
# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testBuildLogits(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, endpoints = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue('AuxLogits' in endpoints)
auxlogits = endpoints['AuxLogits']
self.assertTrue(
auxlogits.op.name.startswith('InceptionResnetV2/AuxLogits'))
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
示例2: testBuildEndPoints
# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testBuildEndPoints(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue('Logits' in end_points)
logits = end_points['Logits']
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('AuxLogits' in end_points)
aux_logits = end_points['AuxLogits']
self.assertListEqual(aux_logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Conv2d_7b_1x1']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 8, 8, 1536])
示例3: testTrainEvalWithReuse
# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
with self.test_session() as sess:
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_resnet_v2(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_resnet_v2(eval_inputs,
num_classes,
is_training=False,
reuse=True)
predictions = tf.argmax(logits, 1)
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例4: testGlobalPoolUnknownImageShape
# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testGlobalPoolUnknownImageShape(self):
batch_size = 1
height, width = 330, 400
num_classes = 1000
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
logits, end_points = inception.inception_resnet_v2(
inputs, num_classes, create_aux_logits=False)
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Conv2d_7b_1x1']
images = tf.random_uniform((batch_size, height, width, 3))
sess.run(tf.global_variables_initializer())
logits_out, pre_pool_out = sess.run([logits, pre_pool],
{inputs: images.eval()})
self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
self.assertTupleEqual(pre_pool_out.shape, (batch_size, 8, 11, 1536))
示例5: testGlobalPoolUnknownImageShape
# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testGlobalPoolUnknownImageShape(self):
batch_size = 2
height, width = 400, 600
num_classes = 1000
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
logits, end_points = inception.inception_resnet_v2(
inputs, num_classes, create_aux_logits=False)
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Conv2d_7b_1x1']
images = tf.random_uniform((batch_size, height, width, 3))
sess.run(tf.global_variables_initializer())
logits_out, pre_pool_out = sess.run([logits, pre_pool],
{inputs: images.eval()})
self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
self.assertTupleEqual(pre_pool_out.shape, (batch_size, 11, 17, 1536))