當前位置: 首頁>>代碼示例>>Python>>正文


Python inception.inception_resnet_v2方法代碼示例

本文整理匯總了Python中nets.inception.inception_resnet_v2方法的典型用法代碼示例。如果您正苦於以下問題:Python inception.inception_resnet_v2方法的具體用法?Python inception.inception_resnet_v2怎麽用?Python inception.inception_resnet_v2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nets.inception的用法示例。


在下文中一共展示了inception.inception_resnet_v2方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testBuildLogits

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testBuildLogits(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      logits, endpoints = inception.inception_resnet_v2(inputs, num_classes)
      self.assertTrue('AuxLogits' in endpoints)
      auxlogits = endpoints['AuxLogits']
      self.assertTrue(
          auxlogits.op.name.startswith('InceptionResnetV2/AuxLogits'))
      self.assertListEqual(auxlogits.get_shape().as_list(),
                           [batch_size, num_classes])
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:inception_resnet_v2_test.py

示例2: testBuildEndPoints

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testBuildEndPoints(self):
    batch_size = 5
    height, width = 299, 299
    num_classes = 1000
    with self.test_session():
      inputs = tf.random_uniform((batch_size, height, width, 3))
      _, end_points = inception.inception_resnet_v2(inputs, num_classes)
      self.assertTrue('Logits' in end_points)
      logits = end_points['Logits']
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      self.assertTrue('AuxLogits' in end_points)
      aux_logits = end_points['AuxLogits']
      self.assertListEqual(aux_logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Conv2d_7b_1x1']
      self.assertListEqual(pre_pool.get_shape().as_list(),
                           [batch_size, 8, 8, 1536]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:inception_resnet_v2_test.py

示例3: testTrainEvalWithReuse

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000
    with self.test_session() as sess:
      train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
      inception.inception_resnet_v2(train_inputs, num_classes)
      eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
      logits, _ = inception.inception_resnet_v2(eval_inputs,
                                                num_classes,
                                                is_training=False,
                                                reuse=True)
      predictions = tf.argmax(logits, 1)
      sess.run(tf.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inception_resnet_v2_test.py

示例4: testGlobalPoolUnknownImageShape

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testGlobalPoolUnknownImageShape(self):
    batch_size = 1
    height, width = 330, 400
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
      logits, end_points = inception.inception_resnet_v2(
          inputs, num_classes, create_aux_logits=False)
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Conv2d_7b_1x1']
      images = tf.random_uniform((batch_size, height, width, 3))
      sess.run(tf.global_variables_initializer())
      logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                          {inputs: images.eval()})
      self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
      self.assertTupleEqual(pre_pool_out.shape, (batch_size, 8, 11, 1536)) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:20,代碼來源:inception_resnet_v2_test.py

示例5: testGlobalPoolUnknownImageShape

# 需要導入模塊: from nets import inception [as 別名]
# 或者: from nets.inception import inception_resnet_v2 [as 別名]
def testGlobalPoolUnknownImageShape(self):
    batch_size = 2
    height, width = 400, 600
    num_classes = 1000
    with self.test_session() as sess:
      inputs = tf.placeholder(tf.float32, (batch_size, None, None, 3))
      logits, end_points = inception.inception_resnet_v2(
          inputs, num_classes, create_aux_logits=False)
      self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Conv2d_7b_1x1']
      images = tf.random_uniform((batch_size, height, width, 3))
      sess.run(tf.global_variables_initializer())
      logits_out, pre_pool_out = sess.run([logits, pre_pool],
                                          {inputs: images.eval()})
      self.assertTupleEqual(logits_out.shape, (batch_size, num_classes))
      self.assertTupleEqual(pre_pool_out.shape, (batch_size, 11, 17, 1536)) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:20,代碼來源:inception_resnet_v2_test.py


注:本文中的nets.inception.inception_resnet_v2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。